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Massless QED (1+1) — the Schwinger model — is studied in a covari-
ant gauge. The main new ingredient is an operator solution of the Dirac
equation expressed directly in terms of the fields present in the Lagrangian.
This allows us to study in detail residual symmetry of the covariant gauge.
For comparison, we analyze first an analogous solution in the Thirring—Wess
model and its implication for the axial anomaly arising from the necessity
to correctly define products of fermion operators via point-splitting. In
the Schwinger model, one has to define the currents in a gauge-invariant
(GI) way. Certain problems with their usual derivation are identified, that
obscure the origin of the massive gauge boson. We show how to define
the truly GI interacting currents, reformulate the theory in a finite volume
and clarify role of the gauge zero mode in the axial anomaly and in the
Schwinger mechanism. A transformation to the Coulomb gauge represen-
tation is suggested along with ideas about how to correctly obtain other
properties of the model.

DOI:10.5506 / APhysPolBSupp.6.287
PACS numbers: 11.10.Ef, 11.15.Tk, 04.60.Kz

1. Introduction

The Schwinger model [1] is a prototype gauge model, studied in hun-
dreds of papers using all kind of techniques. The natural question concerns,
therefore, a necessity to perform another study of this subject. What can be
added or improved in our understanding of the physics of the model? Sur-
prisingly enough, no generally accepted picture of the physical content of the
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model is available and some controversies persist. This is nicely illustrated
by comparing two representatives of the vast literature on the subject: the
seminal work by Lowenstein and Swieca [2] and its mathematically rigorous
reexamination [3]. Both start from the operator solution in Landau gauge
in terms of “building block” fields, namely using Ansaetze for A*(x), J*(x)
and J'(z) in terms of auxiliary fields. The second paper disagrees with the
choice of dynamical variables (the issue of the correct “intrinsic algebra”)
and with the conclusions about the vacuum structure of the former work.

In this contribution, we will make an attempt to clarify the situation
using a Hamiltonian approach that reformulates dynamics consistently in
terms of true degrees of freedom, namely the free fields. In particular, we
will focus on a few overlooked aspects related to truly gauge-invariant (GI)
definitions of the interacting currents and the consequent issues of the axial
anomaly and dynamical generation of the boson mass. We start with a brief
discussion of the related Thirring—Wess (TW) model for comparison. The
key element is the explicit solution of the Dirac equation in the covariant
gauge in terms of the fields present in the starting Lagrangian, i.e. without
using auxiliary fields that obscure some aspects of the problem. Interact-
ing currents can then be calculated directly from the known solutions in a
regularized form (“point-splitting”) in both models. The difference is that
one has to insert an exponential of the line integral of the gauge field to
compensate violation of the local symmetry in the gauge model. The cor-
responding divergences of the quantum currents should, therefore, differ in
the two models. However, this is not the case in the usual treatment! The
explanation will be given and the key ideas and elements of the full solution
of the model will be formulated.

2. The Thirring—Wess model
The model [4, 5] is defined by the classical Lagrangian

3 <> ~ ~ ~ ~ ~ ~ ~ ~
L= %%“ O W — EGWG‘“’ + 3B, B" —el,B",  Gu =09,B,-0,B,.
(1)
The original solutions were either based on indirect methods using Ansaetze
in terms of auxiliary fields or certain redundant definitions of “gauge-invar-
iant” operators. No reliable solution of the model seems to have been ob-
tained so far.
The above Lagrangian leads to the set of coupled field equations
(Dirac+Proca)

00 (z) = ey Bula)W(x), 8,0 + 3B =ed”.  (2)



New Operator Solution of the Schwinger Model in a Covariant Gauge ... 289

Taking 0, of the Proca equation yields (%B“ = 0. With this condition, the
Dirac equation is solved in terms of B%(z) and the free massless fermion
field ¥ (x),v*0up =0

U(x) = exp —%75 /dyle (z' —y") B (y',t) p v(z). (3)

—0o0

Here e(x) = 0(z) —0(—x). Normal-ordering of the exponential is understood.
With the notation k -z = E(k)t — k'z!, E(EY) = /&2 + 12, E(p') = p'],
the quantum field expansions of the independent field variables of the model
are

BO(QZ) — [CL (k_l) e—z'fc-m _'_aT(kl)eil%.w} ’ (4)

dk*
() = \/12?_/ dp! {b (pl) w (pl) e—ipr o gt (pl) . (pl) eiﬁ-x} ’ (5)
(@) ()] = {p (") " (@)} = {a (). (@)} =9

The Fock vacuum is defined as a(k!)|0) = b(k )|O> k1)|0) = 0. The
massless spinors are uf(p!) = ((—=ph),0(p")), vi(p*) = (= O(—=p"),0(p")).
The component B!(x) is determined from the operator relation 9, B* = 0.

The product of two fermion operators is regularized by the point-splitting

o = (e ) oo ).
JE(x) = ot (ZL’ + g) e a4 (x - %) : (6)

- aea 5
Using 1 (24 §)707% (17 1h(z—5) = ¥(@)7 0y (P )b(a) : — g Tr(Leenpe)
as well as the symmetric limit s lim, .o Et—g” = 1/2¢"", we find

JHa) = @)+ =BM2),  JE@) = @)+ S By(e), (1)

j#(x) and j£'(x) are the (normal-ordered) free currents. The expression in the
exponential contains a term of the order of O(e) which cancels the singularity
in the free-field contraction. In this way, a finite quantum correction is
generated. The vector current is obviously conserved, the axial “anomaly”
a(z) is equal to

0" (x) = a(z) = %EWGW(Q;) . (8)

It is remarkable that this is precisely the result known from the Schwinger
model although no exponential of the integral over gauge field was inserted!
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The Proca equations become, due to the relation QLB“ = 0 and the form
of the interacting current, also soluble. Defining retarded Green’s function
by (8,0" + p?)Dr(z —y) = 6@ (z —y), (8,0 + p?)B*(x) = 0, where
p? = pud — %, the resultant equation 8,0"BY(z) + pBY(z) = j¥(z) can
indeed be inverted as

+o0o
B'(z) = B"(a) + ¢ [ dyDale - 1)i" ). (9)

—00

Then the Hamiltonian can be expressed in terms of the above independent
fields. In the final-volume treatment, also the zero mode b!(t) will play
a role. The questions to be studied are diagonalization of the Hamiltonian
deriving thereby the true physical vacuum state of the model and a potential
chiral symmetry breaking.

3. Schwinger model in the Landau gauge

We will start from the classical Lagrangian

L= %ww Ou ¥ = 7 Fu P = eJ, A" = G(2)9, A" + 5 (1 =) (a),

Fu = 0,4, —0,A,, J'(x) =¥ (x)y"¥(x) (10)

that contains two additional terms with respect to the usual QED(1 + 1).
For arbitrary -, these terms restrict the theory to an arbitrary Lorentz
(covariant) gauge (replacing the usual term —%(8,“4“(3:))2) in which neither
the condition 9, A*(x) = 0 nor the Maxwell equations can be satisfied at
the operator level

B FM () = eJV(z) — 0"G(x), 9, AMz) = (1—7)G(z).  (11)

The auxiliary field G(x) satisfies 0,0"*G(z) = 0. Choosing v = 1, the gauge
condition is satisfied at the operator level and the solution of the Dirac
equation (y*0,¥(x) = ey*A,(z)¥(x) is completely analogous to the TW
model case

+oo
e
VU(x) = exp —575 /dyle (a;l — yl) A (yl,t) P(x), You=0.

(12)
In order to guarantee that we are working with the original theory, the
condition on physical states G(*)(x)|phys) = 0, generalizing the Gupta—
Bleuler condition 8MA(+)“|phys> = 0, has to be used. Again, the vector
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and axial-vector currents have to be calculated via the point-splitting. It is
important to keep in mind that the gauge freedom has been restricted only
partially, the Lagrangian is still invariant with respect to gauge transforma-
tions parametrized by the gauge function obeying
> 2 &, _ O
00" A(x) =0= 0jA =0{A = A= —A. (13)
01 o
The conclusion about appearance of a massive vector boson in the theory
with gauge invariance crucially depends on the axial anomaly. For its deriva-
tion, one starts from the “gauge-invariant” definition of the axial current
(see [6], e.g. ), i.e. one inserts the gauge-field exponential to the point-split
product of the fields

z+e€/2
J(“g,)(x):!f/*(wrg) VoM (7°) exp § —ie / dz, A" (2) u‘/(m—%) (14)
z—e/2

No gauge fixing has been done in (14). Both currents are formally GI under
W(z) = @w(z),  AM(z) - AMz) — 9" A(z). (15)

The vector current takes the form

JH(z)=

U (@ (z) 4wt (m—l—;)vo'y“lp(x—;)] [1 - ieel,A”(x)} . (16)

Note that in this derivation, the fermion and gauge fields are taken as inde-
pendent and the free-field contraction has been used. The result is precisely

JH(@) = (@) + AN ), @) = @)+ eV A),  (17)
i.e. gauge-NON-invariant expressions! This fact is hidden since one usu-
ally calculates directly the divergence which gives the “familiar” (gauge-
invariant) anomaly (8). How should one understand the above contradic-
tion? To answer this question, let us calculate the anomaly carefully using
our Landau-gauge operator solution (12). We have to take into account
that the general transformation law A* — A* — 9*A becomes A°(z) —
A(z) — 9y A(x), 8,0"A =0 in our gauge and this completely determines the
transformation law for the interacting fermion field since the free fermion
field 9 (x) does not transform

oo
%WQ j‘ dyle(xliyl)ao/l(yl,t) ie 5@
—oo

U(z) — e U(z)=e?” 2 p(z). (18)
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The point, of course, is that ¥(z) and A*(z) are not independent. We have
to modify the “gauge exponential” in such a way that the (split) currents are
invariant under the specific transformations (18). The correct form of the
current is

J(“S) (z) =t (x + %)707’“‘ (’y ) exp {—zey e Al (x }W(x - %) . (19)
since the gauge variations in the exponential cancel. The interacting currents
found in this way coincide with the free currents! The implication is no
anomaly and, therefore, no Schwinger mechanism! This really looks like a
very strange result.

To understand the situation better, let us analyze the residual gauge
symmetry and interacting currents in an infrared-regularized framework by

restricting —L < 2! < L and imposing (anti)periodic boundary conditions
for the free fields

"b(t _L) = _¢(t’ L) )
Al(t,—L) = AM(t, L) = A (z) = AR (z) + A§(1). (20)
Af(t) is the gauge field zero mode (ZM). The Dirac equation and its solution
is

iYW + iy 0 = e (YA} =7 AN) W — ey Ag(t) ¥ (21)

W(x)=expX iey® /dTAO /dy eN ' —y )AO (:Ul—y ) U(x).
-L
(22)
The gauge condition becomes 9y A% (z) + A1 AL (z) = 0 and AJ(¢) = 0. The

gauge transformations act also in the ZM sector

Al (z) — AR (z) — 0H An(2),

AY(t) = Ap(t) — BoAo(t)
Ap(t) — Ag(t) + 01 Ao (t ) Ap(t) .- (23)
The GI currents have the form
J(5) (@) = exp {—ien®Aj(t) } <:Jc + %) O (%) ¥ (:c - %) . (24)

Contraction in the discrete basis has the same singular structure as in the
continuum and we obtain J¥#(z) = j#(z) + £(0,A45(t)), J&'(x) = jb(z) +
£(A§(t),0). Both currents are gauge invariant since Aj(t) component is GI
by itself. Then
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O () = O (&) + = (0,0:45(t)) = 0, (25)
Oulti(a) = 9,3(@) + = (90A43(1),0) = “00AK() £0.  (20)

From the ZM part of the Maxwell equation one directly has

AYD = ~ZA(0). (o)

We have thus found that the Schwinger mechanism works only in the zero-
mode sector, where it gives rise to the massive Schwinger boson with p? = %

Next steps in the analysis will involve an introduction of the indefinite-
metric space, explicit solution of the Maxwell equations and a derivation of
the Hamiltonian in terms of independent field variables along with a study of
its invariances (chiral symmetry, large gauge transformations). For example,

the (modified) Maxwell equations 8,0"A” = ej” — 9"G will be inverted as

“+o0o +00
A(z) = AP(x)+e / 0y Do (1) () — / @2y Dro(z— )" G(y) . (28)

Presence of the unphysical fields A*(z) in (28) is related to the residual
gauge freedom, which can be removed on the quantum level by means of
a unitary transformation to the Coulomb gauge representation |7, 8|. It is
also necessary to find a mechanism for the vacuum degeneracy in the present
approach. Here the gauge zero mode and its residual (large) gauge symmetry
may play a role (note that the covariant gauge admits transformations with
the gauge function of the form cz'). These topics are presently under study.
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