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Most relativistic quantum field theories of interest appear to involve
the unsolved problem of constructing a ground state, called vacuum. An
elementary example of the vacuum problem appears in a theory in which
the entire interaction is reduced to a mass-mixing term. This example
can be solved using a new renormalization group procedure for effective
particles and the relativistic solution is obtained without any need to solve
the vacuum problem. This contribution briefly reviews the vacuum problem
and explains how the new procedure works around it in the example.
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1. The vacuum problem

It has been stressed by Dirac [1] that the concept of canonical quan-
tum field theory (QFT) introduced by Heisenberg and Pauli [2, 3] involves a
problem of defining a ground state in agreement with principles of quantum
mechanics and special relativity. Quantum mechanics requires summation
over all relevant basis states in a calculation of evolution of every state and
special relativity requires that there are infinitely many basis states to sum
over because field quanta must appear in infinitely many states of motion.
The resulting divergences require cutoffs on momentum and such cutoffs vi-
olate Lorentz symmetry. In their presence, there is no ground state built
from the basis states that could be invariant under Lorentz transformations.
This difficulty led Dirac to question the possibility that QED exists in the
Schrödinger picture. He developed an alternative formulation that he called
the Heisenberg picture, in which he avoided the concept of a ground state
as a state in a Hilbert space and used perturbation theory to calculate ob-
servables.
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The vacuum problem in QCD is more severe than in QED. One reason
is that the coupling constant in QCD is considerably larger than in QED
and the cutoffs on the space of relevant states have to be small in order
to exclude large terms in perturbation theory. The approach that Dirac
adopted for curing QED using cutoffs does not apply in QCD; small cutoffs
on |~p |, where ~p is a momentum of a quantum of a quark or a gluon field, lead
to effects that violate the Lorentz symmetry much stronger than in QED.
Although asymptotic freedom [4, 5] allows one to carry out logical pertur-
bative calculations using QCD, it does not solve the vacuum problem that
is not perturbative. Namely, one needs to explain strong chiral symmetry
breaking in QCD and a non-trivial structure of the vacuum can be invoked
as its origin [6, 7]. One also needs to explain confinement of color [8]. Con-
finement can be associated with the concept of a complex ground state that
contains the quark and gluon condensates [9, 10].

While the problem of constructing a ground state in QCD awaits a so-
lution, the vacuum problem in QFT is not limited to the theory of strong
interactions. It is also involved in the spontaneous symmetry breaking as a
mechanism of mass generation in the standard model [11] and a host of the-
ories that try to explain the standard model, e.g., see Ref. [12]. Ultimately,
the vacuum problem is also relevant to cosmology [13, 14].

In his search for a well-defined relativistic theory of particles, Dirac has
identified the front form (FF) of Hamiltonian dynamics [15] as particularly
promising [16]. The FF promises new avenues for studying dynamics of
quantum fields because 7 out of 10 FF generators of the Poincaré group do
not depend on interactions and are easy to construct. In contrast, in the
standard form of dynamics, which Dirac called the instant form (IF), only
6 out of the 10 IF generators are easy to construct. So, in the IF there are 4
generators that depend on interactions and are difficult to construct and in
the FF there are only 3. Such construction requires incorporation of Wilso-
nian understanding of renormalization of coupling constants in Hamiltonians
of local QFT [17, 18]. The issue of constructing a FF Hamiltonian formula-
tion of QCD using renormalization group (RG) concepts akin to Wilsonian
was re-addressed only quite recently [19] on the time scale of progress in our
understanding of the vacuum problem.

The FF dynamics does not involve the vacuum problem in the same sense
as the IF does [20, 21]. The FF problem can be formulated as an RG problem
for FF Hamiltonians [19]. Namely, the FF regularization cutoffs eliminate
the field modes that could contribute to the vacuum structure. The only
RG-admissible consequence of the cutoffs is new terms in the renormalized
FF Hamiltonians. These FF terms must be responsible for the effects that
are associated with the vacuum in the IF. An alternative approach is to deal
directly with the modes that are cut off, called zero-modes [22]. As time
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attests [23], this is extraordinary difficult. Note also that the IF vacuum
problem itself may be misconstrued by associating the phenomenological
concepts of vacuum condensates [9, 10] with expectation values of quantum
fields in the ultimate IF ground state rather than in the localizable excited
states, such as hadrons in QCD [24, 25].

2. Example of solution to an elementary vacuum problem

Dirac expressed his worry about the ground state problem in QFT using
an elementary model of IF Hamiltonians for fermions. Even simpler model
is discussed here. It describes neutral scalar bosons. The FF solution of
the problem is found using the renormalization group procedure for effective
particles (RGPEP) whose details in the context of the example can be found
in Ref. [26]. Recent descriptions of RGPEP can be found in Refs. [27, 28].

2.1. The IF vacuum problem due to mass mixing

Classical Lagrangian density Lf =
[
(∂φ)2 − µ2φ2 + (∂χ)2 − ν2φ2

]
/2 for

two free neutral scalar fields φ and χ implies a canonical IF Hamiltonian
Hf =

∫
d3xHf with the Hamiltonian density Hf = [π2φ + (~∇φ)2 + µ2φ2 +

π2χ + (~∇χ)2 + µ2χ2]/2. Quantization amounts to writing for t = 0

φ(~x ) =

∫
[p]µ a~p e

−ipx + h.c. , χ(~x ) =

∫
[p]ν b~p e

−ipx + h.c. , (1)

where [p]a = d4p δ(p2 − a2) θ(p0)(2π)−3, assuming that the IF time deriva-
tives in πφ = φ̇ and πχ = χ̇ are determined by the energies Eφ(~p ) =√
µ2 + ~p 2 and Eχ(~p ) =

√
ν2 + ~p 2, and imposing commutation relations[

φ̂(~x ), π̂φ (~y )
]

= [χ̂(~x ), π̂χ (~y )] = iδ3 (~x− ~y ) , (2)

through which the classical fields φ and χ are replaced by their quantum
counterparts φ̂ and χ̂. The resulting normal-ordered quantum Hamiltonian,

Hf (a, b) =

∫
[p]µEφ(~p ) a

†
~p a~p +

∫
[p]ν Eχ(~p ) b

†
~p b~p , (3)

contains no terms of the type a†~p a
†
−~p. They disappear because the combina-

tion of bilinear terms π̂2φ + (~∇φ̂)2 + µ2φ̂2 yields them in the form∫
[p]µ

(
−E2

φ + ~p 2 + µ2
)
a†~p a

†
−~p (4)
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and the right choice of energy Eφ in the time derivatives used to define π̂φ
makes these terms vanish. Terms of the type b†~p b

†
−~p vanish because of the

right choice of Eχ in the time derivatives in π̂χ.
Now let us add to the free Lagrangian density Lf the mass mixing term

LI = −m2 φχ withm much smaller than µ, ν, and |µ−ν|, so that one might
think it is a small perturbation. The corresponding interaction Hamilto-
nian is

HI = −
∫
d3xLI =

∫
[p]µ

m2

2Eχ

(
a†~p b

†
−~p + a†~p b~p + b†~p a~p + a~p b−~p

)
. (5)

One could develop a relativistic quantum theory using the Hamiltonian H =
Hf +HI if not the fact that the norm of the state

HI|0〉 =

∫
[p]µ

m2

2Eχ
a†~p b

†
−~p |0〉 (6)

is infinite. Actually, every state that results from action of HI on any state
in the Fock space has infinite norm. The more powers of HI one applies
to any state, the more divergences are created. The evolution operator
U = exp (−iHt) does not exist.

To make HI finite, one may introduce a cutoff, such as |~p | < Λ. But
such cutoff violates Lorentz symmetry. The ground state of the theory is not
equal to the state |0〉 that is annihilated by a and b. It must involve pairs
of particles of type a and b created by HI. Such state cannot satisfy the
requirements of special relativity for finite cutoffs Λ. This is an elementary
example of the Dirac vacuum problem in QFT.

The mass-mixing model is so simple that the problem can be discussed
further (see below). However, when one considers HI in any realistic the-
ory, especially in gauge theories, similar divergences occur with three or four
quanta being created from the bare Fock vacuum |0〉. Because of these di-
vergences, Dirac suggested that we should abandon the Schrödinger concept
of quantum mechanics in the case of fields.

2.2. IF recipe in the elementary example: re-quantization

The elementary model can be handled in a unique way further despite its
divergent nature in the IF, because its Lagrangian is bilinear in fields. One
can go back to the classical fields, diagonalize the mass-squared matrix in
Lagrangian, and define new fields that are linear combinations of the initial
ones

ξ = cos c∞ φ− sin c∞ χ , (7)
ζ = sin c∞ φ+ cos c∞ χ , (8)
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where c∞ = − arctan
√

ε−1
ε+1 and ε =

√
1 + [2m2/(µ2 − ν2)]2. The origin of

the subscript ∞ will be explained on the next page. In terms of the fields ξ
and ζ, the same classical Lagrangian takes the form

L = Lf + LI =
[
(∂ξ)2 −m2

1ξ
2 + (∂ζ)2 −m2

2ζ
2
]
/2 , (9)

which is a free theory of scalar fields that can be quantized from scratch
as before, except that the time derivatives in the construction of π̂ξ and π̂ζ
need to be Eξ(~p ) =

√
m2

1 + ~p 2 and Eζ(~p ) =
√
m2

2 + ~p 2 in order to avoid
the interactions that create particles from |0〉. As far as the author knows,
there is no known extension of this IF recipe to realistic theories beyond
perturbation theory.

2.3. FF RGPEP solution in the elementary example

Following the steps described in Refs. [29, 30], readers should be able to
establish that the FF quantum Hamiltonian in the example is

P−=
∫

x+=0

d3x :

{[(
∂⊥φ̂

)2
+ µ2φ̂2 +

(
∂⊥χ̂

)2
+ ν2χ̂2

]
/2 +m2φ̂ χ̂

}
: .(10)

No derivatives with respect to x+ appear and it is sufficient to write

φ̂
(
x−⊥

)
=

∫
[p] a~p e

−ipx + h.c. , χ̂
(
x−⊥

)
=

∫
[p] b~p e

−ipx + h.c. (11)

(The FF π̂φ and π̂χ are gradients of the fields with respect to x−.) In com-
parison with Eq. (1) in the IF, one can also notice the absence of subscripts
µ or ν in the FF integration measure over momentum ~p = (p+, p⊥); the
measure does not depend on the mass parameter. In terms of the creation
and annihilation operators

P− =

∫
[p]

[
p⊥ 2 + µ2

p+
a†~p a~p +

p⊥ 2 + ν2

p+
b†~p b~p +

m2

p+

(
a†~p b~p + b†~p a~p

)]
. (12)

The mass-mixing interaction terms of the type a†~p b
†
−~p are absent because

p+ =
√
a2 + p⊥ 2 + pz 2 + pz > 0 if a2 > 0 and |~p | ≤ Λ < ∞. The presence

of the cutoff Λ is not an obstacle in the FF dynamics in the example (see
below). The state |0〉 is an eigenstate of P− with eigenvalue 0 and plays the
role of a ground state. But what is the spectrum of P− due to the remaining
mixing terms? The answer is found using RGPEP. There is no room or need
to explain RGPEP here and the reader may consult Refs. [26–28].
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The key idea is that one can transform the fields φ̂ and χ̂ according to
the rule ψ̂t = Ut ψ̂0 U†t , where t is the RGPEP scale-evolution parameter
with interpretation of the size of effective particles. The canonical fields
correspond to the pointlike, bare particles and t = 0. The P− eigenstates
built from physical particles are obtained using operators ψ̂t with t → ∞.
This is the origin of the subscript ∞ in Eqs. (7) and (8). The operator Ut is
found by solving the RGPEP equation for P−t (see the quoted literature),

d

dt
P−t =

[[
P−f ,PPt

]
,P−t

]
, P−0 = P− , (13)

and integrating, Ut = T exp
(
−
∫ t
0 dτ [P

−
f ,PPτ ]

)
, where T denotes ordering

in the scale parameter. The operator PPt is obtained from P−t by multiplying
its terms twice by P+, where P+ denotes the +-component of a total mo-
mentum carried by the particles that participate in the interaction. Thanks
to the 7 kinematical symmetries of the FF dynamics, preserved in RGPEP,
the non-perturbative operator Eq. (13) reduces to just one non-linear equa-
tion for a 2 × 2 mass-squared matrix, which is entirely independent of the
cutoff Λ and thus respects the Poincaré symmetry irrespective of the value
of the cutoff,

d

dt

[
µ2t m2

t

m2
t ν2t

]
=

[[[
µ2 0
0 ν2

]
,

[
0 m2

t

m2
t 0

]]
,

[
µ2t m2

t

m2
t ν2t

]]
(14)

with initial conditions µ0 = µ, ν0 = ν, m0 = m. This equation only slightly
differs from Wegner’s flow equation for a 2× 2 Hamiltonian matrix [31–33].
The solution is expressible in terms of simple functions and for t → ∞ one
obtains µ2∞ = m2

1, ν2∞ = m2
2, m2

∞ = 0, i.e., at the end of RGPEP the mass
mixing interaction is eliminated and the spectrum of eigenstates of P− is
obtained in terms of the Fock space of free effective particles of masses m1 or
m2, the same as in Sec. 2.2. However, the FF solution of the initial quantum
theory did not involve any re-quantization, or guessing time derivatives to
construct π̂. In the entire RGPEP scale-evolution, |0〉t ≡ |0〉.

3. Conclusion

It is not clear how to deal with the vacuum problem in the IF of dynamics
in realistic theories. The elementary example discussed here is not sufficient
as a guide when more than just two fields appear in a product. In contrast,
the FF RGPEP, which was used here to solve the elementary example, can
be also systematically attempted in realistic QFT, at least perturbatively
(see the quoted literature). Since RGPEP is formulated non-perturbatively,
it may in principle be attempted also beyond perturbation theory.
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