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The Nakanishi perturbative integral representation of the 4D Bethe–
Salpeter amplitude is used to solve the bound state problem in the Min-
kowski space. The main step to derive workable equations for Nakanishi
weight function is provided by the projection onto the null-plane of the
4D Bethe–Salpeter Equation. We present a homogeneous equation for the
Nakanishi weight-function for the ladder approximation of a bosonic model
obtained by using uniqueness of the Nakanishi weight function. We provide
numerical results and compare with another solution method.
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1. Introduction

The Bethe–Salpeter equation (BSE) is useful to treat the nonpertur-
bative regime in two-body, three-body, etc., in both nuclear and hadronic
physics. The popular way to solve it for bound-states adopts a Wick rota-
tion to the Euclidean space, and free propagators see (e.g. [1]), while other
methods like the spectator approximation use a 3D reduction [2]. At the
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hadronic level, Dyson–Schwinger and BSE, with gluonic interactions and
running coupling constant in Euclidean space, is a tool for dealing with the
partonic structure of hadrons [3]. The Minkowski space methods of solving
the BSE, were already developed exploiting the Light-Front (LF) projection
and the expansion of the kernel according to the Fock-space content, i.e., the
reduction of the dynamics to the valence state with an effective interaction
built, from a summation over terms, where higher Fock-states propagate be-
tween initial and final LF time. The kernel in the squared mass eigenvalue
equation for the valence state, which embeds the full-covariant content of
the BSE, can be systematically expanded by using the quasi-potential for-
malism [4, 5]. Then, the full BS amplitude is obtained through a suitable
expansion. This approach resembles the “Iterated Resolvent Method” within
Hamiltonian approach [6], where the full eigenvalue equation in Fock-space
is reduced to the valence state giving rise to an effective squared mass oper-
ator. It is quite nice that a revival of such an approach is recovered within
AdS/QCDmodels, where the mass squared eigenvalue equation for the string
mode amplitude has a correspondence with the valence state and associated
eigenvalue equation (see e.g. [7]).

The perturbation theory integral representation (PTIR) [8] of any multi-
leg transition amplitude is based on a “parametric representation of any
Feynman diagram for interacting bosons, with a denominator carrying the
overall analytic behavior in the Minkowski space” [8]. The final expression
of PTIR amplitude is given by a manyfold integral, where a function of real
variables, the so-called Nakanishi weight-function, is present. A uniqueness
theorem for the Nakanishi weight-function for bosonic systems is also demon-
strated in [8]. Finally, once an integral equation determining the Nakanishi
amplitude is introduced, it should be pointed out that PTIR can be extended
to the nonperturbative regime, despite the perturbative framework where it
has been originally devised. The solution of the bound-state BSE in ladder
approximation for bosons interacting by exchanging a massive scalar, has
been shown to be numerically tractable within PTIR approach [9]. More-
over, a substantial algebraic simplification can be achieved through the in-
troduction of the LF projection of the BSE for the bound-state problem, as
shown by Karmanov and Carbonell for the ladder approximation [10] and
cross-ladder [11]. Notice that the numerical results are in agreement with
both the ones found in [9] and by Euclidean approaches.

In this contribution, the Nakanishi PTIR of the 4D BS amplitude is
used to treat bound states in the Minkowski space. We show some pre-
liminary numerical results obtained by solving a homogeneous equation for
the Nakanishi weight-function derived by applying uniqueness [12]. It is an
alternative form of the bound state equation found in [10] for the ladder ap-
proximation of a bosonic model, close to Ref. [9], but within LF framework,
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which allowed for a much more simple formulation of the kernel. The same
approach was extended to the inhomogeneous BSE within PTIR, in order
to find the scattering amplitude [12].

We will briefly review the formal development of our approach for a
bosonic system, composed by two massive scalars interacting through the
exchange of a massive scalar. The explicit expression of the new integral
equation will be shown, and, as simple applications of our formalism, some
limiting cases, like the Wick–Cutkosky model will be discussed. We provide
numerical results for the bound state for different intermediate boson masses,
in order to compare the integral formulation by Karmanov and Carbonell
and the new equation obtained by applying uniqueness.

2. Nakanishi weight function for a s-wave bound state

2.1. The Karmanov and Carbonell approach

In what follows, we will briefly present the method introduced in [10] to
solve the BSE. The starting point is the projection on to the LF of the BS
amplitude, determined by the BS integral equation. The LF projection is
performed by integrating out the k− dependence [4], as follows∫

dk−

2π
Φb(k, p) =

∫
dk−

2π
G

(12)
0 (k, p)

∫
d4k′

(2π)4
iK(k, k′, p)Φb(k

′, p) , (1)

where G(12)
0 (k, p) = (−i)2

[
((p2 + k)2−m2+ iε)((p2 − k)

2−m2 + iε)
]−1. The

function K(k, k′, p) represents the sum of all two-body irreducible four-leg
off-shell amplitudes. As shown in detail, for instance in Ref. [12], the left-
hand side of Eq. (1) yields the valence component of the interacting two-body
state under consideration.

The second step is given by the introduction of the Nakanishi PTIR form
of the BS amplitude

Φb(k, p) = −i
1∫
−1

dz′
∞∫
0

dγ′
gb
(
γ′, z′;κ2

)[
γ′ +m2 − 1

4p
2 − k2 − p · k z′ − iε

]2+n , (2)

where p2 = M2, κ2 = m2 − M2

4 , and gb is the Nakanishi weight-function.
For n = 1, one gets

∞∫
0

dγ′
gb
(
γ′, z;κ2

)
[d(γ′, γ, z)]2

=

∞∫
0

dγ′
1∫
−1

dz′ V LF
b

(
γ, z; γ′, z′

)
gb
(
γ′, z′;κ2

)
, (3)
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where d(γ′, γ, z) = γ′ + γ + z2m2 + (1− z2)κ2 and the kernel reads

V LF
b

(
γ, z; γ′, z′

)
=

∞∫
−∞

dk−

2π

∫
d4k′

(2π)4
p+G

(12)
0 (k, p)K(k, k′, p)[

k′2 + p · k′z′ − γ′ − κ2 + iε
]3 , (4)

where γ = |k⊥|2 and z = −2k+/M . In what follows, we specialize Eq. (4) by
adopting the ladder approximation, that isK(k, k′, p) = ((k−k′)2−µ2+iε)−1,
with µ the exchanged boson mass.

2.2. Applying uniqueness

Assuming that the uniqueness theorem for gb holds in a nonperturbative
regime, the integral equation (3), in ladder approximation can be putted in
a different form. In order to accomplish such a step, the expression of V LF

b in
ladder approximation, has to be rewritten factorizing an overall denominator
equal to the one in the left-hand side of Eq. (3), viz.

V
(L)
b

(
γ, z; γ′, z′

)
=

g2

2(4π)2

∞∫
−∞

dγ′′
(1+z)
(1+z′)θ(z

′ − z) h
(
γ′′, z; γ′, z′;µ2

)
[γ + γ′′ + z2m2 + κ2(1− z2)− iε]2

+
(
z → −z, z′ → −z′

)
, (5)

where g is the coupling constant and the function h is given by

h
(
γ′′, z; γ′, z′;µ2

)
= θ

[
γ′′

(1 + z′)

(1 + z)
− µ2

]
θ(γ′− − γ′) θ(γ′−)

[
− Bb
γ′′ Ab ∆

+
(1 + z′)

(1 + z)

y+∫
y−

dy
y2

[y2Ab + y(µ2 + γ′) + µ2]2


−(1 + z′)

(1 + z)

∞∫
0

dy
y2

[y2Ab + y(µ2 + γ′) + µ2]2
, (6)

with

Ab=z
′2M

2

4
+ κ2 + γ′ ≥ 0 , Bb

(
z, z′, γ′, γ′′, µ2

)
=µ2 + γ′ − γ′′ (1 + z′)

(1 + z)
≤ 0 ,

γ′−=µ
2 + γ′′

(1 + z′)

(1 + z)
− 2µ

√
γ′′

(1 + z′)

(1 + z)
+ z′2

M2

4
+ κ2 ≥ 0 ,

y± =
−Bb ±∆

2Ab
, ∆2 = B2b − 4µ2Ab ≥ 0 . (7)
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By applying the uniqueness of the Nakanishi weight-function, we get a
simpler form of the integral equation for gb by introducing Eq. (5) in (3),
viz.

gb
(
γ, z;κ2

)
=

g2

2(4π)2

∞∫
0

dγ′
1∫
−1

dz′
[
(1 + z)

(1 + z′)
θ(z′ − z)h

(
γ, z; γ′, z′;µ2

)
+
(
z → −z, z′ → −z′

)]
gb
(
γ′, z′;κ2

)
. (8)

Equation (8) is a standard eigenvalue equation, where 1/g2 is the eigenvalue
and gb the eigenvector.

2.3. Wick–Cutkosky model (µ = 0)

The integral equation for the Nakanishi weight-function (8) simplifies for
µ = 0 and it reads

gLWb (γ, z) =
g2

2(4π)2
θ (γ)

∞∫
0

dγ′

γ′

+1∫
−1

dz′
gLWb (γ′, z′)[

z′2M
2

4 + κ2 + γ′
]

×
[
θ
(
z′ − z

)
θ

(
γ′ − (1 + z′)

(1 + z)
γ

)
+θ
(
z − z′

)
θ

(
γ′ − (1− z′)

(1− z)
γ

)]
. (9)

Notice that if γ→∞ and gLWb (γ′, z′) is taken as a constant, then gLWb (γ, z)→
1/γ. By continuously iterating, one sees that gLWb (γ, z) decreases faster than
any power of 1/γ and, therefore, it is reasonable to introduce a factorized
form as: gLWb (γ′, z′) = fLWb (z′)δ(γ′ − ε) (ε ≥ 0) in (9), which simplifies to

fLWb (z)=
g2

2(4π)2

+1∫
−1

dz′
fLWb (z′)[
z′2M

2

4 +κ2
] [ (1+z)

(1+z′)
θ
(
z′−z

)
+

(1−z)
(1−z′)

θ
(
z−z′

)]

giving a well known expression (see e.g. [13]).

3. Results and perspectives

We have solved numerically both integral equations (3) and (8), the latter
one found by applying uniqueness. The Nakanishi amplitude for the s-wave
solutions of the BSE can be expanded in a bi-orthonormal basis, as follows

g(γ, z) =

Ng∑
i=1

Nz∑
j=1

aijfi(γ)hj(z) , (10)
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where fi(γ) =
√
βLi−1(βγ) exp(−βγ/2) and hj(z) = Nn(1 − z2)C

( 5
2)

n (z)
with n = 2(j− 1) and Nn is a normalization factor. Li−1 (Cn) are Laguerre
(Gegenbauer) polynomials, and β a parameter. In Table I, preliminary re-
sults for α = g2/(4π m)2 , at given B/m = 2 −M/m and µ/m are shown.
The results are numerically stable and the comparison between the differ-
ent methods suggests that uniqueness holds nonperturbatively, at least at
the level of the eigenvalues of the BSE. More detailed studies have still to
be performed in order to investigate how the Nakanishi weight-functions,
calculated with different methods, compare.

TABLE I

Comparison between α′s (see the text) from Ref. [10] and our solutions of (3)
and (8).

B/m µ/m Ref. [10] Eq. (3) Eq. (8) µ/m Ref. [10] Eq. (3) Eq. (8)

1. .5 6.712 6.7114 6.7113 .15 5.315 5.3137 5.3133
.5 4.901 4.9006 4.9005 3.611 3.6107 3.6090
.2 3.251 3.2511 3.2512 2.100 2.0993 2.0962
.1 2.498 2.4980 2.5001 1.437 1.4366 1.4373
.01 1.440 1.4401 1.4400 0.5716 0.57168 0.5736

In summary, within the light-front framework, we have reviewed the
Nakanishi integral equation for bound states found by using uniqueness and
provided preliminary numerical solutions, which show a successful compar-
ison between different approaches. As a perspective, we would say that
the Nakanishi PTIR is not constrained to 3+1 dimensions or to interacting
bosons. Further extension to 2+1 dimensions (e.g., useful to deal with the
Dirac electrons in a graphene sample) and to fermionic systems (like NN)
will be presented elsewhere.

This work was partly support by funds provided by FAPESP (Fundação
de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Na-
cional de Desenvolvimento Científico e Tecnológico ) of Brazil.
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