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BOUND STATE CALCULATIONS IN QED AND QCD
USING BASIS LIGHT-FRONT QUANTIZATION∗

Pieter Maris, Paul Wiecki, Yang Li, Xingbo Zhao
James P. Vary

Department of Physics and Astronomy, Iowa State University
Ames, IA 50011, USA

(Received December 14, 2012)

In order to describe self-bound systems, one needs a nonperturbative
approach. We discuss the relativistic bound state equations of QED and
QCD formulated in Basis Light-Front Quantization. In this approach, the
light-front direction is discretized, and two-dimensional harmonic oscillator
basis functions are used for the transverse direction. At present, the Fock-
space in our calculations is limited to the minimal Fock sector, but the
extension to an arbitrary number of (anti-)fermions and gauge bosons is
in principle straightforward. We present initial results for the energies
and distribution functions of two-body bound states obtained within this
approach and discuss convergence issues.
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1. Nonrelativistic many-body bound state problem

Many-body bound state problems are recognized to be computation-
ally hard problems. The challenge is how to deal with self-bound quantum
systems, with many degrees of freedom, and strong interaction, while at the
same time respecting all relevant symmetries. In recent years, we have made
tremendous progress in describing the structure of atomic nuclei and their
interactions with matter and radiation using realistic two-body and three-
body potentials through state-of-the-art numerical methods on large-scale
supercomputers [1, 2].

One of the commonly used methods in these nonrelativistic bound-state
calculations is the Configuration Interaction (CI) approach for solving the
many-body nuclear Hamiltonian in a (sufficiently large) basis space of Slater
Determinants of single-particle states. In this approach, the wavefunction Ψ
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of a nucleus consisting of A nucleons is expanded in an A-body basis of
Slater Determinants of single-particle states

Ψ (~r1, . . . , ~rA) =
∑

ckΦk(~r1, . . . , ~rA) , (1)

with Φk(~r1, . . . , ~rA) = A[φn1l1j1m1(~r1)φn2l2j2m2(~r2) . . . φnAlAjAmA
(~rA)], and

(typically) a harmonic oscillator (HO) basis for the single-particle states
with quantum numbers n, l, j, and m. The nonrelativistic many-body
Schrödinger equation then becomes an eigenvalue problem

H |Ψi〉 = Ei |Ψi〉 , (2)

where the Hamiltonian H = T +V consists of the kinetic energy operator T
plus the nuclear potential V . For an A-body bound state and a two-body
(plus three-body) potential, this becomes a large sparse matrix problem.

In a complete basis, this method would give exact results for a given
input interaction V . However, practical calculations can only be done in
a finite-dimensional truncation of a complete basis. The Nmax trunca-
tion, in which the total number of HO quanta in a basis state is limited:∑
Nk ≤ N0 +Nmax, is an efficient truncation scheme for light nuclei. Here,

Nk = 2nk + lk is the number of quanta of each single-particle state in the
many-body basis state, and Nmax is the truncation parameter limiting the
number of HO quanta above the minimum, N0, for the system. This cor-
responds to a truncation on the system’s total kinetic energy, and leads to
an exact factorization of the Center-of-Mass (CM) wavefunction and the
relative wavefunction.

2. Bound state problems in relativistic quantum field theory

There exist different methods to study bound state problems in QED and
QCD: e.g. on the lattice, using the (covariant) Bethe–Salpeter equation, or
with Hamiltonian methods, either in the equal-time formulation or in light-
front formulation. One advantage of the latter is that it provides immediate
access to light-front observables such as the distribution functions. Here we
use Basis Light-Front Quantization (BLFQ) [3–5], in which the light-front
direction is discretized, and two-dimensional HO basis functions are used for
the transverse direction.

We use the usual Fock space expansion [6]. For each Fock sector we
expand the many-body wavefunction in products of Slater Determinants of
single-particle states for identical fermions (Permanents for identical bosons)

Ψ(xi; p⊥,i) =
∑

cjΦj(xi; p⊥,i) . (3)
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Since we use single-particle coordinates in the transverse direction, rather
than relative (Jacobi) coordinates, the (anti-)symmetrization for identical
particles is straightforward to implement. However, the obtained wavefunc-
tions include the CM motion in the transverse direction. The main differ-
ences from the nonrelativistic case, see Eq. (1), are: (1) the LF wavefunctions
depend on the longitudinal momentum fraction xi and a two-dimensional
transverse momentum p⊥,i; (2) the mass operator is quadratic; and (3) the
number of constituents (partons) is not conserved — different Fock space
sectors are coupled to each other.

We discretize the momentum fraction in the longitudinal direction [6],
with anti-periodic boundary conditions for fermions, and periodic boundary
conditions for bosons, with the constraint

∑
xi = 1, that is, the total P+ is

kept fixed. We use Nx to indicate the number of intervals (of length 1/Nx)
in the longitudinal direction.

3. Basis Light-Front Quantization

For the transverse direction, we use a two-dimensional HO basis [3–5].
We expand the mass operator (or LF Hamiltonian) in this finite-dimensional
basis, such that the bound state problem reduces to an eigenvalue problem

M2|Ψi〉 = λi|Ψi〉 , (4)

where the discrete (positive definite) eigenvalues λi give the bound state
spectrum, Mi =

√
λi. In BLFQ, the mass operator can be written as

M2 = P+ Tsp − P 2
⊥ + P+ Vrel (5)

with Tsp the single-particle kinetic energy operator, and Vrel the interaction.
The total kinetic energy, including CM motion, is given by the sum of

the single-particle kinetic energies

P+ Tsp =
∑ p2⊥,i +m2

f

xi
, (6)

whereas the CM kinetic energy associated with the motion in the transverse
direction is given by

P+ TCM = P 2
⊥ =

(∑
p⊥,i

)2
. (7)

In QED using light-front gauge we have two-body interactions, such as in-
stantaneous one-photon and one-electron exchange, as well as interactions
that couple different Fock space sectors: creation or annihilation of one
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photon, electron–positron pair-creation, etc. In QCD, we have additional
interaction terms coming from the gluon self-interactions. There are at most
four (anti-)particles involved in each interaction term: the basis interactions
can all be categorized as either (2↔ 2), or (1↔ 2), or (1↔ 3) [6].

We use a transverse HO basis in the conjugate variables (q, s)

(qi = p⊥,i/
√
xi , si = r⊥,i

√
xi) , (8)

defined by the eigenfunctions of the nonrelativistic HO equation in two di-
mensions (q2+b4 s2)φi = eiφi with eigenvalues ei = (1+2ni+ |mi|)2b2. The
total transverse CM energy becomes

P+HCM =
(∑√

xi q⊥,i

)2
+ b4

(∑√
xi s⊥,i

)2
(9)

in this basis. In combination with a truncation on the total number of
HO quanta in the system,

∑
(1 + 2ni + |mi|) ≤ Nmax, the transverse CM

wavefunction and the transverse relative wavefunction factorize for any value
of the basis parameters Nmax and b. (Implicitly this also acts as a Fock space
truncation: each additional parton adds at least one quantum.) Note that
with a HO basis in the transverse momenta and coordinates (p⊥, r⊥), as was
used in Refs. [3–5], the CM wavefunction does not factorize in general.

We can now use the Lagrange multiplier method [7] in order to remove
the CM excited states from the low-lying spectrum. That is, we replace the
mass operator of Eq. (5) by

M2 = P+ Tsp − P 2
⊥ + P+ Vrel + ΛCM

(
P+HCM − 2 b2

)
(10)

with ΛCM > 0. This will increase the eigenvalues λi of CM excited states
by at least 2b2ΛCM, but does not change the states with the lowest (0s)
CM motion. By choosing a sufficiently large ΛCM we can eliminate all CM
excitations from the spectrum up to the highest excitation energy of interest.

4. Numerical results for two-body bound states

In Fig. 1, we show results for a fermion–antifermion bound state in the
minimal Fock sector, using the instantaneous interaction(

P+Vinst
)
ij

=
−4α

(xi − xj)2 + ε
δ2(ri − rj) (11)

as well as a confining potential(
P+Vconf

)
ij

= κ4 xi xj (ri − rj)2 (12)



Bound State Calculations in QED and QCD Using Basis Light-front . . . 325

motivated by soft-wall AdS/CFT [8]. Neither of these interactions flip any
spins, so for simplicity we only consider states with anti-parallel spins. We
use the parameters α = 0.3, κ = 0.2GeV, m = 1.5GeV and a regulator
ε = 0.001 for the instantaneous term. Without the instantaneous term,
we would find a discrete HO spectrum due to the confining potential in the
transverse direction, but with an infinite degeneracy in the limit Nx →∞ for
each HO level. These discrete HO levels are shown as the green horizontal
lines in the left panel of Fig. 1. The instantaneous interaction lifts this
degeneracy, and we see converged discrete levels in the limit Nx →∞.
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Fig. 1. Results for Nmax = 12: Lowest fifteen states as function of Nx (left).
Solid light grey/green horizontal lines represent the spectrum of the unperturbed
confining potential in the transverse direction. Low-lying spectrum as function of
ΛCM > 0 (right).

Without the Lagrange multiplier term, however, it is not easy to interpret
the spectrum. As expected, ΛCM > 0 increases the excitation energies of
states with CM excitations, and by increasing ΛCM we can remove CM
excited states from the low-lying spectrum. Furthermore, we can clearly
recognize states with different number of CM quanta in Fig. 1: the steepness
of the lines is proportional to the number of CM excitations.

The lowest couple of excited states of Fig. 1 are excitations in the longi-
tudinal direction, as is evident from Fig. 2. In addition to these longitudinal
excitations (which become degenerate with the ground state in the absence
of the instantaneous interaction), we can also recognize excited states corre-
sponding to HO excited states in the absence of instantaneous interaction,
despite all the level crossings in Fig. 1, e.g. at 3.027GeV and at 3.034GeV.

The extension of this approach to baryons is straightforward. We have
performed initial calculations in finite model spaces for systems of three
quarks, using the same interactions Eqs. (11) and (12), and find qualitatively
similar results. In particular, we have confirmed the factorization of the
transverse CM motion in this HO basis, independent of the quark masses.
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Fig. 2. Left: Convergence with Nx of the ground state distribution function f(x)
for Nmax = 12. Right: f(x) of the lowest 3 states for Nmax = 12 and Nx = 99.

We also find exact factorization of the CM motion in small model space
calculations including the next Fock space sectors, with one explicit photon
or gluon. In order to judge convergence with Nx and Nmax, we have to
implement consistent regularization and nonperturbative renormalization,
following the sector-dependent renormalization procedures of Ref. [9].
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