LORENTZ SYMMETRY FOR THE LIGHT-FRONT WIGHTMAN FUNCTIONS*

JERZY A. PRZESZOWSKI

Faculty of Physics, University of Białystok Lipowa 41, 15-424 Białystok, Poland

(Received November 30, 2012)

New results for the Wightman function near the light-front hypersurface are presented. Mainly they disagree with the existing literature and suggest a substantial reformulation of the LF theory.

DOI:10.5506/APhysPolBSupp.6.327 PACS numbers: 11.10.Ef, 11.15.Bt, 11.30.Er, 12.20.Ds

1. Introduction

The 2-point Wightman function for a free scalar field is $\langle 0|\phi(x)\phi(y)|0\rangle = \Delta_+(x-y)$, where the Lorentz invariant function $\Delta_+(x)$ is defined by the covariant Fourier integral

$$\Delta_{+}(x) := \int_{\mathbb{R}^{4}} \frac{d^{4}k}{(2\pi)^{3}} \Theta(k_{0}) e^{-ik_{\mu}x^{\mu}} \delta\left(k^{2} - m^{2}\right) \,. \tag{1}$$

The integration over k_0 can be easily performed leading to the 3-dimensional equal-time (ET) Fourier integral

$$\Delta_{+}(x) := \int_{\mathbb{R}^{3}} \frac{d^{3}\boldsymbol{k}}{(2\pi)^{3}} \frac{1}{2\omega} e^{-i\omega x^{0}} e^{+i\boldsymbol{k}\cdot\boldsymbol{x}}, \qquad \omega = \sqrt{m^{2} + \boldsymbol{k}^{2}}, \qquad (2)$$

which then leads to the explicitly Lorentz invariant expression

$$\Delta_{+}(x) = -\frac{i}{4\pi} \operatorname{sgn}\left(x^{0}\right) \,\delta\left(x^{2}\right) + \Theta\left(-x^{2}\right) \frac{m}{4\pi^{2}\sqrt{-x^{2}}} K_{1}\left(m\sqrt{-x^{2}}\right) + \Theta\left(x^{2}\right) \frac{m}{8\pi\sqrt{x^{2}}} \left(N_{1}\left(m\sqrt{x^{2}}\right) + i\operatorname{sgn}\left(x^{0}\right) \,J_{1}\left(m\sqrt{x^{2}}\right)\right) \,. (3)$$

* Presented at the Light Cone 2012 Conference, Kraków, Poland, July 8–13, 2012.

This well known result can be studied for different limits. For the invariant interval $x^2 = (x^0)^2 - x^2 \sim 0$, one celebrates the light-cone singularity

$$\Delta_{+}(x) \sim -\frac{i}{4\pi} \operatorname{sgn}\left(x^{0}\right) \,\delta\left(x^{2}\right) + \frac{1}{4\pi^{2}} \mathcal{P}\frac{1}{x^{2}} \,. \tag{4}$$

Also the ET limit $x^0 \to 0$ is well defined

$$\lim_{x^{0} \to 0} \Delta_{+} (x^{0}, \boldsymbol{x}) = \Delta_{+} (0, \boldsymbol{x}) = \frac{m}{4\pi^{2}r} K_{1}(mr), \qquad r = |\boldsymbol{x}|.$$
 (5)

Taking the light-front (LF) limit naively, one finds

$$\lim_{x^{+} \to 0} \Delta_{+}\left(x^{+}, x^{-}, \boldsymbol{x}_{\perp}\right) = \Delta_{+}\left(0, x^{-}, \boldsymbol{x}_{\perp}\right) = -\frac{i}{8} \operatorname{sgn}\left(x^{-}\right) \delta^{2}(\boldsymbol{x}_{\perp}) + \frac{m K_{1}\left(m \boldsymbol{x}_{\perp}\right)}{4\pi^{2} \boldsymbol{x}_{\perp}}.$$
(6)

Comparing the mass dependent parts of (5) and (6) one finds for small arguments $r \to 0$ and $x_{\perp} \to 0$, respectively

$$\frac{m}{4\pi^2 r} K_1(mr) \sim \frac{1}{4\pi^2} \frac{1}{r^2}, \qquad \frac{m}{4\pi^2 x_\perp} K_1(mx_\perp) \sim \frac{1}{4\pi^2} \frac{1}{x_\perp^2}.$$
(7)

This pole singularity is integrable in 3 dimensions, but is not in 2 dimensions, thus in terms of distributions $\Delta_+(0, x^-, \boldsymbol{x}_\perp) \notin \mathcal{S}'(\mathbb{R}^2)$, while $\Delta_+(0, \boldsymbol{x}) \in \mathcal{S}'(\mathbb{R}^3)$. This means that the naive LF limit is at least inconsistent. Actually, the careful analysis leads for $x^+x^- \sim 0$ to the expression

$$\Delta_{+}(x) = -\frac{1}{4\pi} \left[\ln \frac{m^{2} |x^{+}x^{-}|}{2} + 2\gamma_{E} + i\frac{\pi}{2} \left[\operatorname{sgn} \left(x^{+} \right) + \operatorname{sgn}(x^{-}) \right] \right] \delta^{2} \left(\boldsymbol{x}_{\perp} \right) - \frac{1}{4\pi^{2}} D_{i} \left[\frac{x^{i}}{x_{\perp}^{2}} K_{0} \left(m x_{\perp} \right) \right] + 0 \left(x^{+}x^{-} \right) , \qquad (8)$$

where D_i is a distributional partial derivative. Accordingly, $\Delta_+(x)$ is singular for points lying along a light-like direction at the LF hypersurface $x^+ = 0$. Appearance of such singularity disagrees with the existing literature [1, 2] and one may ask if this singularity is relevant to physical problems.

One may implement these results for the commutator function — the Jordan–Pauli function — defined as

$$\langle 0 | [\phi(x), \phi(y)] | 0 \rangle = \Delta_{+}(x-y) - \Delta_{+}(y-x) =: i\Delta(x-y).$$
 (9)

Near $x^+x^- \sim 0$, one finds

$$\Delta(x) = -\frac{1}{4} \left[\operatorname{sgn}(x^+) + \operatorname{sgn}(x^-) \right] \delta^2(\boldsymbol{x}_\perp) + 0 \left(x^+ x^- \right) , \qquad (10)$$

thus evidently, the LF limit exists

$$\lim_{x^+ \to 0} \Delta(x) = \Delta(0, \bar{x}) = -\frac{1}{4} \operatorname{sgn}(x^-) \,\delta^2(\boldsymbol{x}_\perp) \,, \tag{11}$$

where we denote hereafter $\bar{x} = (x^-, \boldsymbol{x}_\perp)$. Starting from

$$\Delta(x) \sim -\frac{1}{4} \left[\text{sgn}(x^+) + \text{sgn}(x^-) \right] \delta^2(x_\perp) , \qquad (12)$$

one finds

$$\partial_{+}\Delta(x) \sim -\frac{1}{2}\delta(x^{+})\delta^{2}(\boldsymbol{x}_{\perp})$$
, (13)

which has no LF limit. Accordingly, the Jordan–Pauli function $\Delta(x)$ is a smooth but non-analytic function of x^+ at $x^+ = 0$, *i.e.* at the LF hypersurface. Therefore, the temporal evolution in x^+ variable from $\Delta(0, \bar{x})$ to $\Delta(x^+, \bar{x})$, with arbitrary $x^+ \neq 0$, cannot be reduced to the Taylor expansion series. This means that the LF Cauchy problem for $\Delta(x)$ must be reformulated without using analyticity at $x^+ = 0$.

2. General properties of the LF Wightman function

Let us assume the translational invariance, the Lorentz invariance of the vacuum state $|0\rangle = U(\Lambda)|0\rangle$ and the Lorentz covariance of $\phi(x)$

$$U(\Lambda) \phi(x) U^{-1}(\Lambda) = \phi(x') , \qquad x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} .$$
 (14)

These assumptions lead us to the relations for the Wightman function

$$(x_{\nu}\partial_{\mu} - x_{\mu}\partial_{\nu}) \langle 0|\phi\left(x^{+}, \bar{x}\right) \phi(0)|0\rangle = 0.$$
(15)

Then, adding the LF canonical commutator

$$\left[\phi\left(x^{+},\bar{x}\right),\phi\left(x^{+},\bar{y}\right)\right] = -\frac{i}{4}\operatorname{sgn}\left(x^{-}-y^{-}\right)\,\delta^{2}\left(\boldsymbol{x}_{\perp}-\boldsymbol{y}_{\perp}\right)$$
(16)

we find that the Lorentz symmetry is consistent with

$$\lim_{x^+ \to 0} x^{\pm} \partial_{\pm} \langle 0 | \phi \left(x^+, \bar{x} \right) \phi(0) | 0 \rangle = -\frac{1}{4\pi} \delta^2 \left(\boldsymbol{x}_{\perp} \right) , \qquad (17)$$

which means that the logarithmic terms in x^+ and x^- will appear near $x^+ = 0$. This conclusion is valid for general scalar fields. Then, restriction to a free field case allows us to take Klein–Gordon equation for a scalar field

$$\left(2\partial_{+}\partial_{-} - \Delta_{\perp} + m^{2}\right)\phi(x) = 0, \qquad (18)$$

which leads to the equation of motion for Wightman function $W_{(2)}(x^+, \bar{x}) = \langle 0|\phi(x^+, \bar{x}) \phi(0)|0\rangle$

$$\left(\partial_{+}\partial_{-}-\mathscr{D}\right) W_{(2)}\left(x^{+},\bar{x}\right)=0, \qquad \mathscr{D}=\frac{1}{2}\left(\varDelta_{\perp}-m^{2}\right). \tag{19}$$

Then, we find the integral equation for the Wightman function

$$W_{(2)}(x^{+},\bar{x}) = -\frac{\delta^{2}(\boldsymbol{x}_{\perp})}{4\pi} \left[\log(m\,x^{+}) + \log(m\,x^{-}) \right] - \frac{1}{4\pi^{2}} D_{i} F^{i}(\boldsymbol{x}_{\perp}) + \mathscr{D} \int_{0}^{x^{+}} d\tau \int_{0}^{x^{-}} d\xi W_{(2)}(\tau,\xi,\boldsymbol{x}_{\perp}) , \qquad (20)$$

where $\log(z) = \ln |z| + i(\pi/2) \operatorname{sgn}(z)$ and

$$F^{i}(\boldsymbol{x}_{\perp}) = \frac{x^{i}}{x_{\perp}^{2}} K_{0}(mx_{\perp}) = \frac{i}{4\pi} \int_{\mathbb{R}^{2}} d^{2}\boldsymbol{k}_{\perp} e^{i\boldsymbol{k}_{\perp}\cdot\boldsymbol{x}_{\perp}} \frac{k^{i}}{k_{\perp}^{2}} \ln \frac{m^{2}}{m^{2} + k_{\perp}^{2}} .$$
(21)

Then, from (20), we obtain the integral equation for the Pauli–Jordan function $\Delta(x) = -i \left[W_{(2)}(x^+, \bar{x}) - W_{(2)}(-x^+, -\bar{x}) \right]$

$$\Delta(x) = -\frac{1}{4}\delta^2(\boldsymbol{x}_{\perp})\left[\operatorname{sgn}\left(x^+\right) + \operatorname{sgn}\left(x^-\right)\right] + \mathscr{D}\int_{0}^{x^+} d\tau \int_{0}^{x^-} d\xi \,\Delta\left(\tau, \xi, \boldsymbol{x}_{\perp}\right) \quad (22)$$

and its partial derivative

$$\partial_{+}\Delta(x) = -\frac{1}{2}\delta^{2}\left(\boldsymbol{x}_{\perp}\right)\delta\left(x^{+}\right) + \mathscr{D}\int_{0}^{x^{-}}d\xi\,\Delta\left(x^{+},\xi,\boldsymbol{x}_{\perp}\right)\,.$$
(23)

Evidently, $\partial_+ \Delta(x)$ is singular at $x^+ = 0$ but we may subtract the singular term as follows,

$$\lim_{x^{+} \to 0} \left[\partial_{+} \Delta(x) + \frac{1}{2} \delta^{2}(\boldsymbol{x}_{\perp}) \,\delta\left(x^{+}\right) \right] = \lim_{x^{+} \to 0} \mathscr{D} \int_{0}^{x^{-}} d\xi \,\Delta\left(x^{+}, \xi, \boldsymbol{x}_{\perp}\right)$$
$$= -\frac{1}{4} \mathscr{D} \left| x^{-} \right| \delta^{2}(\boldsymbol{x}_{\perp}) , \qquad (24)$$

where the final expression agrees with the literature, for example [3]. This suggests that the subtraction of singular terms may be a reasonable procedure, thus we also may define a subtracted Wightman function as

$$S(x^{+},\bar{x}) := W_{(2)}(x^{+},\bar{x}) + \frac{\delta^{2}(\boldsymbol{x}_{\perp})}{4\pi} \log(m_{0}x^{+}) .$$
 (25)

From (20), we easily find the integral equation for $S(x^+, \bar{x})$ as follows

$$S\left(x^{+},\bar{x}\right) = -\frac{\delta^{2}\left(\boldsymbol{x}_{\perp}\right)}{4\pi} \log\left(m_{0}\,x^{-}\right) - \mathscr{D}\delta^{2}\left(\boldsymbol{x}_{\perp}\right) \,\frac{x^{-}x^{+}}{4\pi} \left[\log\left(m_{0}\,x^{+}\right) - 1\right] \\ + \mathscr{D}\int_{0}^{x^{+}} d\tau \int_{0}^{x^{-}} d\xi \,S\left(\tau,\xi,\boldsymbol{x}_{\perp}\right) - \frac{1}{4\pi^{2}} D_{i}F^{i}\left(\boldsymbol{x}_{\perp}\right) \,.$$
(26)

Thus, $\partial_+ S(x^+, \bar{x})$ is singular at $x^+ = 0$, but the LF limit for $S(x^+, \bar{x})$ exists and defines regular distributions in the transverse coordinates

$$\lim_{x^{+} \to 0} S\left(x^{+}, \bar{x}\right) = S\left(0, \bar{x}\right) = -\frac{\delta^{2}\left(\boldsymbol{x}_{\perp}\right)}{4\pi} \log\left(m_{0} \, x^{-}\right) - \frac{1}{4\pi^{2}} D_{i} F^{i}\left(\boldsymbol{x}_{\perp}\right) \in \mathcal{S}'\left(\mathbb{R}^{2}\right).$$
(27)

In summary, the Jordan–Pauli function $\Delta(x)$ and the subtracted Wightman function $S(x^+, \bar{x})$ are smooth but non-analytic functions at $x^+ = 0$.

3. Momentum representation for Δ_+

In the covariant formula,

$$\Delta_{+}(x) = \int_{\mathbb{R}^{4}} \frac{d^{4}k}{(2\pi)^{3}} \Theta(k^{+} + k^{-}) e^{-ik_{\mu}x^{\mu}} \delta\left(2k^{+}k^{-} - k_{\perp}^{2} - m^{2}\right), \qquad (28)$$

usually one integrates over k^-

$$\Delta_{+}(x) = \int_{\mathbb{R}^{2}} \frac{d^{2} \mathbf{k}_{\perp}}{(2\pi)^{3}} e^{i \, \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}} \int_{0}^{\infty} \frac{dk^{+}}{2k^{+}} e^{-ik^{+}x^{-}} e^{-i\left(\mu^{2}/k^{+}\right)x^{+}}, \qquad (29)$$

where $\mu^2 = (m^2 + k_{\perp}^2)/2$. Thus at the LF $x^+ = 0$, the mass dependence disappears but the integral over k^+ becomes divergent. When the cut-off δ is introduced $k^+ > \delta$, then the Lorentz symmetry is definitely lost. But since there are two identities in the sense of distributions

$$\delta\left(2k^{+}k^{-}-k_{\perp}^{2}-m^{2}\right) = \frac{1}{2|k^{+}|} \,\,\delta\left(k^{-}-\frac{\mu^{2}}{k^{+}}\right) = \frac{1}{2|k^{-}|} \,\,\delta\left(k^{+}-\frac{\mu^{2}}{k^{-}}\right), \quad (30)$$

thus the integration over both k^+ and k^- gives

$$\Delta_{+}(x) = \int_{\mathbb{R}^{2}} \frac{d^{2} \mathbf{k}_{\perp}}{(2\pi)^{3}} e^{i \, \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}} \left[\int_{K^{+}}^{\infty} \frac{dk^{+}}{k^{+}} e^{-ik^{+}x^{-}} e^{-i(\mu^{2}/k^{+})x^{+}} + \int_{K^{-}}^{\infty} \frac{dk^{-}}{k^{-}} e^{-i(\mu^{2}/k^{-})x^{-}} e^{-ik^{-}x^{+}} \right]$$
(31)

with constraint $K^+K^-=\mu^2=(m^2+k_\perp^2)/2.$ At LF $x^+=0,$ we need to cut-off high momentum k^-

$$\Delta_{+}^{\Lambda}(0,\bar{x}) = \int_{\mathbb{R}^{2}} \frac{d^{2}\boldsymbol{k}_{\perp}}{(2\pi)^{3}} e^{i\boldsymbol{k}_{\perp}\cdot\boldsymbol{x}_{\perp}} \left[\int_{K^{+}}^{\infty} \frac{dk^{+}}{k^{+}} e^{-ik^{+}x^{-}} + \int_{K^{-}}^{\Lambda} \frac{dk^{-}}{k^{-}} e^{-i\left(\mu^{2}/k^{-}\right)x^{-}} \right] (32)$$

and one could implement the Pauli–Villars regularization for removing cutoff Λ , but this would kill all mass independent terms. Therefore, we propose to subtract terms which become singular for $\Lambda \to \infty$. We may take such term as

$$\Delta^{\rm sing}_{+}(\bar{x}) := \int_{\mathbb{R}^2} \frac{d^2 \boldsymbol{k}_{\perp}}{(2\pi)^3} e^{i \, \boldsymbol{k}_{\perp} \cdot \boldsymbol{x}_{\perp}} \int_{\mathcal{M}}^{\Lambda} \frac{dk^-}{k^-} = \frac{1}{2\pi} \delta^2(\boldsymbol{x}_{\perp}) \ln(\Lambda/\mathcal{M}) \,, \tag{33}$$

where $\mathcal{M} > 0$ is an arbitrary parameter. This leads to the subtracted function

$$S(\bar{x}) := \lim_{\Lambda \to \infty} \left[\Delta_{+}^{\Lambda}(0, \bar{x}) - \Delta_{+}^{\text{sing}}(\bar{x}) \right] = \int_{\mathbb{R}^{2}} \frac{d^{2} \mathbf{k}_{\perp}}{(2\pi)^{3}} e^{i \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}} \\ \times \left[\int_{\mu^{2}/\mathcal{M}}^{\infty} \frac{dk^{+}}{k^{+}} e^{-ik^{+}x^{-}} + \int_{0}^{\mu^{2}/\mathcal{M}} \frac{dk^{+}}{k^{+}} \left(e^{-ik^{+}x^{-}} - 1 \right) \right]$$
(34)

which agrees with the formerly defined function $S(0, \bar{x})$. The integrals over k^+ are very instructive. In the first part, the lower limit $(m^2 + k_{\perp}^2)/(2\mathcal{M})$ is commonly interpreted as a mass dependent infra-red cut-off. However, we argue that without the second part one definitely looses the Lorentz symmetry, violates unitarity and obtains incorrect dependence on mass of the Wightman function.

4. Conclusions and prospects

We have shown that the Lorentz symmetry induces singularities at $x^+=0$ for points lying along a light-like direction. For a free scalar field, Wightman functions can be uniquely determined without using the Fock representation. For the momentum representation of $\Delta_+(x)$, we need to use both longitudinal momenta k^+ and k^- . Then at $x^+ = 0$, we have the mass dependent terms and the large momentum k^- needs to be regularized. As we have found that the Jordan–Pauli function $\Delta(x)$ is smooth but non-analytic function of x^+ at $x^+ = 0$, then nontrivial problems may appear within the canonical LF quantization procedure for fields with higher spin like Dirac fermions, massive vector fields, gauge vector fields, *etc.* Also the Cauchy problem needs to be reexamined near $x^+ = 0$.

REFERENCES

- [1] F. Rohrlich, L. Streit, Nuovo Cim. B7, 166 (1972).
- [2] P. Ullrich, E. Werner, J. Phys. A: Math. Gen. 39, 6057 (2006).
- [3] J.M. Cornwall, R. Jackiw, *Phys. Rev.* D4, 367 (1971).