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New results for the Wightman function near the light-front hypersurface
are presented. Mainly they disagree with the existing literature and suggest
a substantial reformulation of the LF theory.
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1. Introduction

The 2-point Wightman function for a free scalar field is 〈0|φ(x)φ(y)|0〉 =
∆+(x − y), where the Lorentz invariant function ∆+(x) is defined by the
covariant Fourier integral

∆+(x) :=

∫
R4

d4k

(2π)3
Θ(k0)e

−ikµxµ δ
(
k2 −m2

)
. (1)

The integration over k0 can be easily performed leading to the 3-dimensional
equal-time (ET) Fourier integral

∆+(x) :=

∫
R3

d3k

(2π)3
1

2ω
e−iωx

0
e+ik·x , ω =

√
m2 + k2 , (2)

which then leads to the explicitly Lorentz invariant expression

∆+(x) = − i

4π
sgn

(
x0
)
δ
(
x2
)

+Θ
(
−x2

) m

4π2
√
−x2

K1

(
m
√
−x2

)
+Θ

(
x2
) m

8π
√
x2

(
N1

(
m
√
x2
)

+ i sgn
(
x0
)
J1

(
m
√
x2
))

. (3)
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This well known result can be studied for different limits. For the invariant
interval x2 = (x0)2 − x2 ∼ 0, one celebrates the light-cone singularity

∆+(x) ∼ − i

4π
sgn

(
x0
)
δ
(
x2
)

+
1

4π2
P 1

x2
. (4)

Also the ET limit x0 → 0 is well defined

lim
x0→0

∆+

(
x0,x

)
= ∆+ (0,x) =

m

4π2r
K1(mr) , r = |x| . (5)

Taking the light-front (LF) limit naively, one finds

lim
x+→0

∆+

(
x+, x−,x⊥

)
=∆+

(
0, x−,x⊥

)
=− i

8
sgn

(
x−
)
δ2(x⊥)+

mK1 (mx⊥)

4π2x⊥
.

(6)
Comparing the mass dependent parts of (5) and (6) one finds for small
arguments r → 0 and x⊥ → 0, respectively

m

4π2r
K1(mr) ∼

1

4π2
1

r2
,

m

4π2x⊥
K1(mx⊥) ∼ 1

4π2
1

x2⊥
. (7)

This pole singularity is integrable in 3 dimensions, but is not in 2 dimensions,
thus in terms of distributions ∆+(0, x−,x⊥) /∈ S ′(R2), while ∆+(0,x) ∈
S ′(R3). This means that the naive LF limit is at least inconsistent. Actually,
the careful analysis leads for x+x− ∼ 0 to the expression

∆+(x) = − 1

4π

[
ln
m2 |x+x−|

2
+ 2γE + i

π

2

[
sgn

(
x+
)

+ sgn(x−)
]]
δ2 (x⊥)

− 1

4π2
Di

[
xi

x2⊥
K0 (mx⊥)

]
+ 0

(
x+x−

)
, (8)

where Di is a distributional partial derivative. Accordingly, ∆+(x) is singu-
lar for points lying along a light-like direction at the LF hypersurface x+ = 0.
Appearance of such singularity disagrees with the existing literature [1, 2]
and one may ask if this singularity is relevant to physical problems.

One may implement these results for the commutator function — the
Jordan–Pauli function — defined as

〈0| [φ(x), φ(y)] |0〉 = ∆+(x− y)−∆+(y − x) =: i∆(x− y) . (9)

Near x+x− ∼ 0, one finds

∆(x) = −1
4 [sgn (x+) + sgn (x−)] δ2 (x⊥) + 0 (x+x−) , (10)
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thus evidently, the LF limit exists

lim
x+→0

∆(x) = ∆(0, x̄) = −1
4sgn (x−) δ2 (x⊥) , (11)

where we denote hereafter x̄ = (x−,x⊥). Starting from

∆(x) ∼ −1
4 [sgn (x+) + sgn (x−)] δ2 (x⊥) , (12)

one finds
∂+∆(x) ∼ −1

2δ (x+) δ2 (x⊥) , (13)

which has no LF limit. Accordingly, the Jordan–Pauli function ∆(x) is a
smooth but non-analytic function of x+ at x+ = 0, i.e. at the LF hyper-
surface. Therefore, the temporal evolution in x+ variable from ∆(0, x̄) to
∆(x+, x̄), with arbitrary x+ 6= 0, cannot be reduced to the Taylor expan-
sion series. This means that the LF Cauchy problem for ∆(x) must be
reformulated without using analyticity at x+ = 0.

2. General properties of the LF Wightman function

Let us assume the translational invariance, the Lorentz invariance of the
vacuum state |0〉 = U(Λ)|0〉 and the Lorentz covariance of φ(x)

U(Λ)φ(x)U−1(Λ) = φ
(
x′
)
, x′µ = Λµνx

ν . (14)

These assumptions lead us to the relations for the Wightman function

(xν∂µ − xµ∂ν) 〈0|φ
(
x+, x̄

)
φ(0)|0〉 = 0 . (15)

Then, adding the LF canonical commutator

[
φ
(
x+, x̄

)
, φ
(
x+, ȳ

)]
= − i

4
sgn

(
x− − y−

)
δ2 (x⊥ − y⊥) (16)

we find that the Lorentz symmetry is consistent with

lim
x+→0

x±∂±〈0|φ
(
x+, x̄

)
φ(0)|0〉 = − 1

4π
δ2 (x⊥) , (17)

which means that the logarithmic terms in x+ and x− will appear near
x+ = 0. This conclusion is valid for general scalar fields. Then, restriction
to a free field case allows us to take Klein–Gordon equation for a scalar field(

2∂+∂− −∆⊥ +m2
)
φ(x) = 0 , (18)
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which leads to the equation of motion for Wightman function W(2)(x
+, x̄) =

〈0|φ(x+, x̄)φ(0)|0〉

(∂+∂− −D) W(2)

(
x+, x̄

)
= 0 , D = 1

2

(
∆⊥ −m2

)
. (19)

Then, we find the integral equation for the Wightman function

W(2)

(
x+, x̄

)
= −δ

2 (x⊥)

4π

[
log
(
mx+

)
+ log

(
mx−

)]
− 1

4π2
DiF

i (x⊥)

+D

x+∫
0

dτ

x−∫
0

dξW(2) (τ, ξ,x⊥) , (20)

where log(z) = ln |z|+ i(π/2) sgn(z) and

F i(x⊥) =
xi

x2⊥
K0(mx⊥) =

i

4π

∫
R2

d2k⊥ e
ik⊥·x⊥ k

i

k2⊥
ln

m2

m2 + k2⊥
. (21)

Then, from (20), we obtain the integral equation for the Pauli–Jordan func-
tion ∆(x) = −i

[
W(2)(x

+, x̄)−W(2)(−x+,−x̄)
]

∆(x) = −1
4δ

2 (x⊥)
[
sgn

(
x+
)

+ sgn
(
x−
)]

+ D

x+∫
0

dτ

x−∫
0

dξ ∆ (τ, ξ,x⊥) (22)

and its partial derivative

∂+∆(x) = −1
2δ

2 (x⊥) δ
(
x+
)

+ D

x−∫
0

dξ ∆
(
x+, ξ,x⊥

)
. (23)

Evidently, ∂+∆(x) is singular at x+ = 0 but we may subtract the singular
term as follows,

lim
x+→0

[
∂+∆(x) + 1

2δ
2 (x⊥) δ

(
x+
)]

= lim
x+→0

D

x−∫
0

dξ ∆
(
x+, ξ,x⊥

)
= −1

4D
∣∣x−∣∣ δ2 (x⊥) , (24)

where the final expression agrees with the literature, for example [3]. This
suggests that the subtraction of singular terms may be a reasonable proce-
dure, thus we also may define a subtracted Wightman function as

S
(
x+, x̄

)
:= W(2)(x

+, x̄) +
δ2 (x⊥)

4π
log
(
m0 x

+
)
. (25)
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From (20), we easily find the integral equation for S(x+, x̄) as follows

S
(
x+, x̄

)
= −δ

2 (x⊥)

4π
log
(
m0 x

−)−Dδ2 (x⊥)
x−x+

4π

[
log
(
m0 x

+
)
− 1
]

+D

x+∫
0

dτ

x−∫
0

dξ S (τ, ξ,x⊥)− 1

4π2
DiF

i (x⊥) . (26)

Thus, ∂+S(x+, x̄) is singular at x+ = 0, but the LF limit for S(x+, x̄) exists
and defines regular distributions in the transverse coordinates

lim
x+→0

S
(
x+, x̄

)
=S (0, x̄)=−δ

2 (x⊥)

4π
log
(
m0 x

−)− 1

4π2
DiF

i (x⊥)∈ S ′
(
R2
)
.

(27)
In summary, the Jordan–Pauli function ∆(x) and the subtracted Wightman
function S(x+, x̄) are smooth but non-analytic functions at x+ = 0.

3. Momentum representation for ∆+

In the covariant formula,

∆+(x) =

∫
R4

d4k

(2π)3
Θ(k+ + k−)e−ikµx

µ
δ
(
2k+k− − k2⊥ −m2

)
, (28)

usually one integrates over k−

∆+(x) =

∫
R2

d2k⊥
(2π)3

eik⊥·x⊥

∞∫
0

dk+

2k+
e−ik

+x−e−i(µ
2/k+)x+ , (29)

where µ2 = (m2 + k2⊥)/2. Thus at the LF x+ = 0, the mass dependence
disappears but the integral over k+ becomes divergent. When the cut-off δ
is introduced k+ > δ, then the Lorentz symmetry is definitely lost. But
since there are two identities in the sense of distributions

δ
(
2k+k− − k2⊥ −m2

)
=

1

2|k+|
δ

(
k− − µ2

k+

)
=

1

2|k−|
δ

(
k+ − µ2

k−

)
, (30)

thus the integration over both k+ and k− gives

∆+(x) =

∫
R2

d2k⊥
(2π)3

eik⊥·x⊥

 ∞∫
K+

dk+

k+
e−ik

+x−e−i(µ
2/k+)x+

+

∞∫
K−

dk−

k−
e−i(µ

2/k−)x−e−ik
−x+

 (31)



332 J.A. Przeszowski

with constraint K+K− = µ2 = (m2 + k2⊥)/2. At LF x+ = 0, we need to
cut-off high momentum k−

∆Λ
+ (0, x̄)=

∫
R2

d2k⊥
(2π)3

eik⊥·x⊥

 ∞∫
K+

dk+

k+
e−ik

+x−+

Λ∫
K−

dk−

k−
e−i(µ

2/k−)x−

(32)
and one could implement the Pauli–Villars regularization for removing cut-
off Λ, but this would kill all mass independent terms. Therefore, we propose
to subtract terms which become singular for Λ → ∞. We may take such
term as

∆sing
+ (x̄) :=

∫
R2

d2k⊥
(2π)3

eik⊥·x⊥

Λ∫
M

dk−

k−
=

1

2π
δ2(x⊥) ln(Λ/M) , (33)

where M > 0 is an arbitrary parameter. This leads to the subtracted
function

S(x̄) := lim
Λ→∞

[
∆Λ

+(0, x̄)−∆sing
+ (x̄)

]
=

∫
R2

d2k⊥
(2π)3

eik⊥·x⊥

×

 ∞∫
µ2/M

dk+

k+
e−ik

+x− +

µ2/M∫
0

dk+

k+

(
e−ik

+x− − 1
) (34)

which agrees with the formerly defined function S(0, x̄). The integrals over
k+ are very instructive. In the first part, the lower limit (m2 + k2⊥)/(2M)
is commonly interpreted as a mass dependent infra-red cut-off. However,
we argue that without the second part one definitely looses the Lorentz
symmetry, violates unitarity and obtains incorrect dependence on mass of
the Wightman function.

4. Conclusions and prospects

We have shown that the Lorentz symmetry induces singularities at x+=0
for points lying along a light-like direction. For a free scalar field, Wightman
functions can be uniquely determined without using the Fock representation.
For the momentum representation of ∆+(x), we need to use both longitudi-
nal momenta k+ and k−. Then at x+ = 0, we have the mass dependent terms
and the large momentum k− needs to be regularized. As we have found that
the Jordan–Pauli function ∆(x) is smooth but non-analytic function of x+
at x+ = 0, then nontrivial problems may appear within the canonical LF
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quantization procedure for fields with higher spin like Dirac fermions, mas-
sive vector fields, gauge vector fields, etc. Also the Cauchy problem needs
to be reexamined near x+ = 0.
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