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We derive the O(p%) Chiral Perturbation Theory Lagrangian in the
massless quark limit for a class of gravity dual models of Quantum Chromo-
dynamics with the chiral symmetry broken through boundary conditions.
The odd O(p%) couplings are related to the O(p*) low-energy constants
(LECs) in the even-parity sector. Some combinations of even O(p°) cou-
plings are found to be universal and independent of the peculiarities of the
model. These relations turn out to be the manifestation at low energies of
a broader relation between anomalous and even-parity amplitudes.
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1. Introduction

The relation between the anomalous and even-parity sectors of Quantum
Chromodynamics (QCD) was studied in detail in Ref. [1| within the frame-
work of holographic QCD [2-5]. This work was motivated by the analysis
of Son and Yamamoto [6] of holographic models, where the chiral symmetry
was broken through boundary conditions (b.c.). An interesting relation was
found therein between the left-right correlator ITpr (Q?) and the transverse
part wr(Q?) of the anomalous AVV Green’s function [6] (studies of such a
relation can be found in [7]). At low energies, this turned into a relation
between the O(p*) even-parity Chiral Perturbation Theory (xPT) coupling
Lo and the O(p%) odd-intrinsic-parity coupling C3y [3].

In [1], we derived the remaining O(p%) odd-sector couplings — in the
massless quark limit considered all along the analysis — and found analogous
relations with the O(p*) even low-energy constants (LECs). We focused
on the odd couplings C3¥ and CJ¥ [9], which can be directly related to
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the transition of a pion into two photons and two axial-vector currents,
respectively. These amplitudes are found to be related to the vector form
factor of the pion and the axial-vector form factor into three pions [1].

In the kind of models studied in this paper, with the chiral symmetry
broken through b.c., the action is composed by the Yang—Mills (YM) and
Chern—Simons (CS) terms, describing the even and anomalous QCD sectors,
respectively [2-5]:

S = Sym + Scs, (1)
1
5 2 2
SyM = —/d T tr [—f (z)}'zu—i- 25°(2) W} )
Sos = ——C / tr [A}'2—|— SAYF - A5] :
247T 10

with N¢ the number of colors and the fifth coordinate z running from —zg
to 2o with 0 < z9 < 4o00. A(x,2) = ApdaM is the 5D U(Ny) gauge field
and F = dA —iA N A is the field strength.

Chiral symmetry can be realized as a 5D gauge symmetry localized on
the two boundaries at z = 4+23. The gauging of the chiral symmetry allows
one to naturally introduce the corresponding right and left current sources,
respectively r,(z) and £,(x), through the ultraviolet b.c. A,(x,—z) =
lu(x) and Ay(x,20) = ru(x) [1]. In the 5D gauge A. = 0, one has the field

decomposition in on-shell states

Ay, 2) = ZTM(:L‘)

+Z'U ¢2n 1 +Za ¢2n y ( )

where the commonly used tensors w,(z) and I',(x) from xPT contain the
chiral Goldstones and £,,(x) and r,(x) [9, 10]. The resonance wave-functions
1 (z) are provided by the normalizable eigenfunctions of the equation of
motion (EoM) for the transverse part of the gauge field and the pion wave-
function 1g(z) is the solution of the EoM at ¢> = 0 with b.c. g(£29) = £1.

Once we have rewritten the 5D fields in terms of the chiral Goldstones
and vector and axial-vector resonances, the derivation of the meson La-
grangian is straightforward. We substitute the A, decomposition provided
in Eq. (2) in the 5D action (1). This yields terms without resonance fields
[3-5] which, at low energies, provide the Wess—Zumino-Witten (WZW) La-
grangian (O(p*)) [4, 5] and the O(p?), and O(p*) xPT action [11] with the
corresponding LECs given in terms of the corresponding 5D integrals of pion
wave-function [3].
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2. Sum-rules and chiral couplings at O(p%)

The O(p®) LECs are generated by the intermediate resonance exchanges.
More precisely, we need just the one-resonance exchanges, given by the terms
of the action with one-resonance field. The couplings avyn, aaqn, byngr,
byny3 - - - are defined by the corresponding 5D integrals of the wave-functions.
At the level of the generating functional, in order to compute the diagrams
with intermediate resonances, one must perform the functional integration
over the heavy resonance configurations in the low-energy limit [1, 10].

Before proceeding to the actual computation, we will consider a series of
resonance sum-rules which will be needed for the extraction of some LECs
and the amplitudes. They are obtained through the EoMs of the 5D fields
and the completeness condition for the wave-function solutions ¥, (z) [1].
We obtain, for instance

[e.e] oo

> avonbonarmin =2f2, Y ayenbynger = 4L, (3)
n=1

o o0

> Baaancan =2, > Banancan /min =4(Lo — 8L1)/f2, (4)

n=1 n=1

respectively, related to the w7 vector form factor (VFF) and the wnm axial-
vector form factor (AFF) at high energies.

Through the integration of the heavy resonances in the generating func-
tional, we obtain all the odd-parity sector LECs C’,IC/V in the massless quark
case. By means of wave-function completeness relations and EoMs they can
be reexpressed in terms of the O(p*) YPT couplings of the even sector L;
and Lg and a constant Z [1]. In particular, we find

N, N,

W _ 9 W _ ¢

C22 — 3271_72]07%[/9 , C23 — W(Lg - 8L1) . (5)
Taking into account the relation Lg = —Llo in this kind of holographic
models [3], we recover the result C3y = 327r2 72 Lo 8]

It is also possible to compute the O(p®) even-sector LECs in the holo-
graphic model. In particular, we find some relations independent of the
peculiarities of the model: the vy — 7%70 amplitude is ruled by [1, 12|

25674 fg (8C53 + 8C55 + Cs6 + Cs7 + 2Cx9) = Ngv ,
—1287* f2 (Cs6 + Cs7 + 2Cs9) = NE/6, (6)
and for vy — wta~ [1, 13]

2567 f2 (8Cs53— 8Cs5 + Csg+Cs7— 2059 + 4C78+8Cg7— 4Csg) = 0
—1287" f2 (Cs6 + Cs7 — 2C59 — 4C75) = 0. (7)
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3. Relations between anomalous and even-parity amplitudes

3.1. Green’s function relation: LR versus AV'V correlator

The relations between the odd-sector O(p®) constants and the O(p*) con-
stants in the even sector indicate possible relations between hadronic ampli-
tudes. One example is the Son—Yamamoto relation between the transverse
structure function wrt(Q?) of the AVV Green’s function and the left-right
correlator ITLr(Q?) [6]

wr (Q%) = gi + ]JYC Myr (Q%) . (8)

where the Euclidean squared momentum transfer Q> = —¢?. Taking the
Q% — 0 limit on both sides, one gets the C3y LEC relation but with Lg =
—Lqo [8].

3.2. Form factor relation: v* — 7w versus m — yy*

Other studies in two specific models showed that the 7° — ~~* tran-
sition form-factor ]:M*V*(QQ,O) was equal to the pion vector form-factor
Fyenr(Q?) up to normalization [14, 15]. This relation was found to be uni-
versal in the class of models considered here [1]

N¢

= 37 Forr (Q%) . (9)

Fryy (Q27 O)

In the low-energy limit Q% — 0, we recover the C3¥ relation in (5).

The form-factors from different models may have completely different
behaviours at Q2 — oo [16], as one can see in Fig. 1 compared to the
experimental data. In order to reproduce the observed 1/Q? behavior for
the form factors, the models need to be asymptotically AdS in the UV, as
this is the case of the “cosh” and hard wall models |2, 3]. One finds the
large-Q? behavior of the form factors [14]

Qoo Nogifx

Fryerye (Q2,0) T (10)

If the 5D coupling, g5 is fixed by the perturbative QCD logarithmic term
of the axial-vector correlator at short distances, i.e., g7 = 247%/N¢ [2], one

2
recovers the asymptotic behavior QFr«+(Q?,0) Rl f= [17].
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Fig.1. Left: Vector form factor Fy«rr(Q?) from the flat [2], “cosh” [2], hard
wall [3] and Sakai-Sugimoto [4, 5] models, denoted by the dotted, solid, dashed

and dash-dotted lines, respectively. The experimental data is taken from [18] (di-

amonds) and [19] (triangles). Right: Anomalous myy* form factor: experimental
data from CLEO [20] (triangles), BaBar [21] (squares) and Belle Collaboration [22]
(diamonds).

3.8. Form factor relation: A — wnmw versus m — AA

A similar relation shows up between form factors involving the axial-
vector source, related to the C3% expression in (5). This O(p%) odd-parity
coupling is related to the m — AA transition form-factor [1]

[iwir {@s o} oe mwat
i Ne
 2Un2f,
with p = q1+¢2, Q% = —¢?, Q2 = —¢2. In Ref. [1], we found that it is possible
to relate this amplitude to the A — wrw form-factor in the massless quark
limit [24]
(7(p1) 7" (p2)m(p3)|ij;,"|0) = £*° f*% Py (q) (12)
X []:1(@27 5,t)(p1 — p3)y + F1 (QQ,T% s) (p2 —p3),] + (a4 ),

with ¢ = p1 + pa +ps, P (0) = nhi — 4a0"/d?, Q% = —¢*, s = (01 + p3)*,
t = (p2 +p3)?, u = (p1 + p2)? and the axial-vector current jg“.

In the particular kinematical regime s = ¢ = 0, we find the relation
between anomalous and even-parity sectors [1|

L R@on=Fu@y=1-%

n

dabc €uvaf Q%QQ/B ‘Fﬂ'AA (Q%’ Q%) (11)

3a Aqn Can Q2
2 mgn +Q

(13)

The ng relation in (5) is recovered by means of the low energy expansion
of F1(Q?%,0,0) and Fraa(Q?0) in (13).
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Based on these results, one may speculate that the relations between the
O(p®) odd and O(p*) even-sector LECs represent the manifestation at low
energies of further amplitude relations.
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