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1. Introduction

The inhomogeneous Bethe–Salpeter (BS) equation in the Minkowski
space [1] provides a covariant four-dimensional description of two-body scat-
tering states. For scalar particles it reads

F (p, ps;P )

= K(p, ps;P )− i
∫

d4p′

(2π)4
K(p, p′;P )F (p′, ps;P )[(

P
2 + p′

)2 −m2 + iε
] [(

P
2 − p′

)2 −m2 + iε
] .
(1)

The one-boson exchange kernel K has the form

K
(
p, p′;P

)
= − g2

(p− p′)2 − µ2 + iε
. (2)
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We introduce the coupling constant α defined by g2 = 16πm2α and make
the partial wave expansion of the amplitude F according to [2]

F (θ) = 16π
∞∑
l=0

(2l + 1)FlPl(cos θ) .

In the center of mass frame, one has ~P = 0, P0 =
√
s = 2εps = 2

√
m2 + p2s

and for a given incident momentum ps, the partial wave off-mass-shell am-
plitude Fl depends on two scalar variables p0 and |~p|. It will be hereafter
denoted by Fl(p0, p; ps) setting p = |~p|, ps = |~ps|. For the S-wave, equa-
tion (1) obtains the form

F0(p0, p; ps) = K0(p0, p; ps)−
4i

π2

∞∫
0

p′
2
dp′

∞∫
−∞

dp′0

× K0 (p0, p; p
′
0, p
′)F0 (p

′
0, p
′; ps)(

p′20 + 2p′0εps + ps2 − p′2 + iε
) (
p′20 − 2p0εps + ps2 − p′2 + iε

) , (3)

where

K0(p0, p; p
′
0, p
′) = − 1

32π

1∫
−1

dz
g2

(p0 − p′0)2 −
(
p2 − 2pp′z + p′2

)
− µ2 + iε

= −αm
2

4pp′
log
|η + 1|
|η − 1|

+
iαπm2

4pp′
U(η) , (4)

and

U(η) =

{
1, if |η| ≤ 1
0, if |η| > 1

, η =
(p0 − p′0)2 − p2 − p′

2 − µ2

2pp′
.

The on-shell amplitude F on
l = Fl(p0 = 0, p = ps; ps) determines the

phase shift according to

δl =
1

2i
log

(
1 +

2ips
εps

F on
l

)
. (5)

The knowledge of this function in the entire domain of its arguments —
i.e. the off-shell amplitude — is mandatory for some interesting physical
applications, like for instance computing the transition e.m. form factor
γ∗d→ np or solving the BS–Faddeev equations. This quantity has not been
obtained until now.
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The numerical solution of the BS equation in the Minkowski space is
complicated by the existence of singularities in the amplitude as well as in
the integrand of (1). These singularities are integrable in the mathematical
sense, due to iε in the denominators of propagators, but their integration is
a quite delicate task and requires the use of appropriate analytical as well
as numerical methods.

To avoid these singularities, the BS equation was first solved in the Eu-
clidean space. These solutions provided on-shell quantities like binding ener-
gies and phase shifts [3]. However, we have shown [4] that the Euclidean BS
amplitude cannot be used to calculate electromagnetic form factors, since
the corresponding integral does not allow the Wick rotation. One, therefore,
needs the BS amplitude in the Minkowski space.

This amplitude has been computed for a separable kernel (see [5] and
references therein). For a kernel given by a Feynman graph — ladder and
cross ladder — the Minkowski BS amplitude was first obtained in our pre-
ceding works [6, 7] in the case of bound state problem. We developed to
this aim an original method based on the Nakanishi integral representation
of the BS amplitude. A similar method for the scattering states has been
proposed in [8] although the numerical solutions are not yet available.

We present in this contribution a new method providing a direct solution
of the original BS equation. It is based on an accurate treatment of the
singularities and allows us to compute the corresponding off-shell scattering
amplitude in the Minkowski space. We will give the low energy parameters
in the case of spinless particles and ladder kernel. First results have been
published in [9].

2. The direct method

There are four sources of singularities in the r.h. side of the BS equa-
tion (1), which are detailed below.

(i) The constituent propagators in (3) vs. p′0 have two poles, each of
them represented as

1

p′0 − a− iε
= PV

1

p′0 − a
+ iπδ

(
p′0 − a

)
,

where PV means the principal value. In the product of four pole terms, the
only non vanishing contributions come from the product of four PVs with-
out delta-functions, from the terms with three PVs and one delta-function
and from the term with two PVs and two deltas. After partial wave decom-
position the 4D integral BS equation (1) is reduced to a 2D one, Eq. (3).
Integrating in (3) over p′0, we obtain in addition to the 2D part, a 1D inte-
gral over p′ and a non-integrated term. The singularities due to the PVs are
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eliminated by subtractions according to the identity

PV

∞∫
0

f (p′0) dp
′
0

p′0
2 − a2

=

∞∫
0

(
f (p′0)

p′0
2 − a2

− f(a)

p′0
2 − a2

)
dp′0 .

The integrand in r.h.-side is not singular.
(ii) The propagator of the exchanged particle has the pole singularities

which, after partial wave decomposition, turn into logarithmic ones, Eq. (4).
Their positions are found analytically and the numerical integration over p′0
variable is split into intervals between two consecutive singularities, namely

∞∫
0

[. . .] dp′0 =

sing1∫
0

[. . .] dp′0 +

sing2∫
sing1

[. . .] dp′0 + . . .

Each of these integrals is made regular with an appropriate change of vari-
able. We proceed in a similar way for the p′ integration.

(iii) The inhomogeneous (Born) term is given by the ladder kernel and
is also singular in both variables. The positions of these singularities are
analytically known.

(iv) The amplitude F0 itself has many singularities, among which the
strongest one results from the Born term K0(p0, p; ps). This makes difficult
its representation on a basis of regular functions as well as its numerical
integration in (3). To circumvent this difficulties we made the replacement
F0(p0, p; ps) = K0(p0, p; ps)f0(p0, p; ps), where f0 is a smooth function. After
that, the singularities of the inhomogeneous term are canceled. We obtain in
this way a non-singular equation for f0 which we solve by standard methods.
Then we restore the BS off-mass-shell amplitude F0 in the Minkowski space.

3. Numerical results

We first applied this method to solve the bound state problem by drop-
ping the inhomogeneous term in (1). The binding energies coincide, within
four-digit accuracy, with the ones calculated in our previous work [6] and
with the Euclidean space results.

Solving Eq. (3), the S-wave off-shell scattering amplitude F0 is calculated
and the phase shifts are extracted by means of Eq. (5). Above the first
inelastic threshold p∗s(µ) =

√
mµ+ µ2/4, the phase shifts have an imaginary

part which has been also found. By performing a Wick rotation in (3) — and
taking into account the contributions of singularities which, in contrast to the
bound state case, crossed the rotated contour — we derived an Euclidean
space equation similar to one obtained in [3]. The phase shifts found by
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these two methods — i.e., solving Eq. (3) and the Euclidean space equation
— coincide with each other within 3–4 digits. Furthermore, the imaginary
part of the phase shifts vanishes with high accuracy below threshold. The
unitarity condition is not automatically fulfilled in our approach, but appears
as a consequence of handling the correct solution. It thus provides a stringent
test of the numerical method. Our results reproduce the phase shifts given
in [3] within the accuracy allowed by extracting numerical values from
published figures.

Figure 1, left panel, shows the phase shifts calculated via BS equation
(solid curve) and via the Schrödinger one with the Yukawa potential (dashed
curve) for the constituent mass m = 1, exchange mass µ = 0.5 and coupling
constant α = 1.2. For this value of α there exists a bound state. Therefore,
according to the Levinson theorem, the phase shift starts at 180 degrees. One
can see that the relative difference between relativistic and non-relativistic
results is considerable large specially for small incident momentum. This
difference increases with α.

Fig. 1. Left: phase shift calculated via BS equation (solid curve) are compared to the
non-relativistic results (dashed curve) for µ = 0.5. Right: solid curve — imaginary
part of the phase shift; dashed curve — modulas of the two-body S-matrix.

Right panel in Fig. 1 shows the imaginary part of the phase shift which
automatically appears when the incident momentum exceeds the threshold
value for the creation of one exchange meson. For m = 1 and µ = 0.5 this
value is p∗s = 0.75. Simultaneously, the modulus of the two-body S-matrix
differs from 1. For ps = 1.118 the second inelastic threshold, corresponding
to the creation of two mesons, is open. It also contributes to this curve.

We have displayed in Fig. 2 the real (left panel) and imaginary (right
panel) parts of the off-shell scattering amplitude F0(p0, p; ps) vs. p0 and
p calculated for ps = µ = 0.5. Its real part shows a non-trivial structure
with a ridge and a gap resulting from the singularities of the inhomogeneous
term. Its on-shell value F on

0 = F0(p0 = 0, p = ps; ps), determining the phase
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shift calculated previously, corresponds to a single point p0 = 0, p = ps on
theses surfaces. Our calculation, shown in Fig. 2, provides the full amplitude
F0(p0, p; ps) in a two-dimensional domain. It cannot be found from the
Euclidean equation. Computing this quantity is the main result of this work.

Fig. 2. Left: real part of the off-shell amplitude F0(p0, p; ps) for ps = 0.5, µ = 0.5.
Right: imaginary part of F0(p0, p; ps).

4. Conclusion

We solved the BS equation for the scattering states in the Minkowski
space for the ladder kernel. The off-mass-shell amplitude is found for the
first time. Coming on mass shell, we obtain the phase shifts which coincide
with ones calculated by other methods. They considerably differ, even at low
energy, from the non-relativistic phase shifts calculated by the Schrödinger
equation. Above the meson creation threshold, the inelasticity appears which
is also calculated. The off-mass-shell amplitude can be used to calculate the
transition form factor and as an input in the three-body BS–Faddeev equa-
tions.
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