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LORENTZ SYMMETRY AND GAUGE
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Zwanziger model of quantum electrodynamics (QED) introduces two in-
dependent vector gauge fields: Aµ and Bµ, which allows for the local form
of interaction and the electromagnetic duality transformation. This formu-
lation is based on a fixed space-like 4-vector nν , which appears in the defini-
tion of the electromagnetic field strength tensor Fµν . One finds a gauge in-
variant differential condition on the Wightman function 〈0|Aµ(x)Bν(y)|0〉.
For a a free field, due to Peierls’s formula, this condition has no dependence
on nµ. One proves that this condition is inconsistent with the Lorentz co-
variance for vector fields, thus there is no Lorentz covariant Wightman
function 〈0|Aµ(x)Bν(y)|0〉 in any gauge. Therefore, one may freely take
different choices for the equal-time and the light-front formulations.
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1. Introduction

The Wightman functions 〈0 |Vµ(x)Wν(y)| 0〉 for vector fields provide us
with a practical tool for studying different properties of quantum field the-
ories. Assuming the translational invariance

〈0 |Vµ(x)Wν(y)| 0〉 = 〈0 |Vµ(x−y)Wν(0)| 0〉 = 〈0 |Vµ(0)Wν(y−x)| 0〉 , (1)

we may consider 〈0 |Vµ(x)Wν(0)| 0〉 as a generic case. Taking the Lorentz
transformation for a vector field, say Vµ(x) field,

U−1Λ Vµ(x) UΛ = ΛνµVν(Λx) , (2)

where for an infinitesimal case (Λx)µ = Λµνxν = xµ + ωµνxν with ωµν =
−ωνµ and assuming the Lorentz symmetric vacuum state, one finds the
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condition for the Lorentz covariant Wightman function for two arbitrary
vector fields Vµ(x) and Wν(x)

(xλ∂ρ − xρ∂λ) 〈0 |Vµ(x)Wν(0)| 0〉
= gρµ 〈0 |Vλ(x)Wν(0)| 0〉 − gλµ 〈0 |Vρ(x)Wν(0)| 0〉
+ gρν 〈0 |Vµ(x)Wλ(0)| 0〉 − gλν 〈0 |Vµ(x)Wρ(0)| 0〉 . (3)

When the vector fields Vµ(x) and Wµ(x) are Hermitian operators and the
system is symmetric under the PCT transformation, then the Wightman
functions respect symmetry under the inversion of their ordering

〈0 |Vµ(x)Wν(0)| 0〉 = 〈0 |Wν(x)Vµ(0)| 0〉 . (4)

For a single vector field Wµ = Vν = Aµ, one may easily find the Wightman
function, which satisfies both the Lorentz covariance equation (3) and the
discrete symmetry (4) is

〈0 |Aµ(x)Aν(y)| 0〉 = gµνF+(x) , (5)

where F+(x) is a Lorentz invariant (generalized) function. This analysis can
be compared with the canonical quantization procedure. In the standard
formulation of QED, when Aµ is a single vector gauge potential, one needs
to introduce some gauge fixing condition for a consistent canonical quanti-
zation. For different gauges, one finds that the Wightman function for a free
field case has the general structure

〈0 |Aµ(x)Aν(y)| 0〉 = −gµνD+(x) + ∂µΦν(x) + ∂νΦµ(x) , (6)

where D+(x) is the massless invariant singular function, defined by the
Fourier integral as

D+(x) =

+∞∫
−∞

d3k

(2π)3
e−ik·x

2
∣∣∣~k∣∣∣ , (7)

while Φµ(x) depends on the choice of gauge condition. Evidently, this general
Wightman function agrees with the discrete symmetry condition (4), while
its common gauge independent part gµνD+(x) agrees with the Lorentz co-
variance (3) and (5). In the standard formulation of QED, one expresses the
electromagnetic field tensor Fµν(x) in terms of a single gauge vector poten-
tial Aµ(x) as Fµν(x)=∂µAν(x)−∂νAµ(x). Thus from (6), one finds Peierls’s
formula [1] for the Wightman function of the electromagnetic field tensor

〈0|Fµν(x)Fλρ(0)|0〉 = [gµλ ∂ν∂ρ−gνλ ∂µ∂ρ+gνρ ∂µ∂λ−gµρ ∂ν∂λ]D+(x) , (8)

where all dependence on a gauge fixing condition, which is contained in
Φµ(x), disappears as expected. Thus in the standard formulation of QED,
the gauge invariant information is located in the Lorentz covariant part of
the Wightman function (6).
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2. Two potential formulation of QED

Two potential formulation of QED starts with Maxwell’s equations with
the electric and magnetic external sources Jµ and Kµ

(∂ · F )µ = ∂µF
µν = Jν ,

(
∂ · F̃

)µ
= ∂µF̃

µν = Kν , (9)

where F̃µν = 1
2ε
µνλσFλσ is the dual electromagnetic tensor. These equations

are symmetric under the electromagnetic duality transformation

Fµν 7→ F̃µν 7→
˜̃
Fµν = −Fµν , Jµ 7→ Kµ 7→ −Jµ . (10)

Since now, one cannot express Fµν by a single gauge field potential, then
one may try the explicitly covariant definition by Cabbibo–Ferrari [2]

Fµν = ∂µAν − ∂νAµ − εµνλρ∂λBρ (11)

with two gauge field potentials Aµ and Bµ. Now, the electromagnetic dual-
ity (10) for Fµν takes the equivalent form

Aµ 7→ Bµ 7→ −Aµ . (12)

Unfortunately, this formulation has no action principle, thus one cannot
use (11) in a consistent canonical quantization. For a consistent formulation
of two potential QED, we will follow Zwanziger [3], where one starts with
the algebraic identities for tensors Fµν and F̃µν

Fµν =
1

n2
[nµ(n · F )ν − nν(n · F )µ]− 1

n2
εµνλρnλ

(
n · F̃

)
ρ
, (13)

F̃µν =
1

n2

[
nµ(n · F̃ )ν − nν(n · F̃ )µ

]
+

1

n2
εµνλρnλ (n · F )ρ , (14)

where nµ is a fixed 4-vector, preferably a space-like one n2 < 0. Zwanziger
defines two vector gauge potentials Aµ and Bµ implicitly by

(n ·F )ν = (n ·∂)Aν −∂ν(n ·A) ,
(
n · F̃

)ν
= (n ·∂)Bν −∂ν(n ·B) . (15)

These gauge potentials Aµ and Bµ are independent, with two gauge trans-
formations

Bµ(x)→ Bµ(x) + ∂µχg(x) , Aµ(x)→ Aµ(x) + ∂µχe(x) , (16)

and the electromagnetic duality transformation coincides with (12). Further
for the mixed Wightman functions (MWF), one may extend (4) to

〈0 |Aµ(x)Bν(0)| 0〉 = 〈0 |Bν(x)Aµ(0)| 0〉 = −〈0 |Aν(x)Bµ(0)| 0〉 , (17)
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thus MWF are antisymmetric in their tensor indexes. Starting from the
definitions (15), we find a new identity for MWF

(n · ∂)2ελαβρ∂λ〈0|Aα(x)Bβ(0)|0〉= (n · ∂)〈0|(n · F )β(x)F ρβ(0)|0〉
+nρ〈0|(n · F )β(x) ∂λF

λβ(0)|0〉 (18)

which is explicitly invariant under gauge transformations (16).

3. MFW for free electromagnetic fields

For free fields, one may use Peierls’s formula (8), which changes (18) to

(n · ∂)2εµνλρ∂λ〈0|Aµ(x)Bν(0)|0〉 = 2(n · ∂)2∂ρD+(x) . (19)

Then, for n2 < 0, we can integrate out the differential operator (n · ∂)2 by
assuming vanishing of gauge potentials at the boundary at spatial infinity
and we arrive at

εµνλρ∂λ〈0|Aµ(x)Bν(0)|0〉 = 2∂ρD+(x) , (20)

which has the explicitly Lorentz covariant form. We may introduce a sim-
plifying notation

〈0|Ai(x)Bj(0)|0〉 = εijkPk(x) , (21)
〈0|A0(x)Bi(0)|0〉 = Ni(x) = −〈0|Ai(x)B0(0)|0〉 , (22)

where εijk = ε0ijk, ε0123 = 1, so we can rewrite equation (20) as

∂0Pk(x)− εkij∂iNj(x) = ∂kD+(x) , ∂kPk(x) = ∂0D+(x) . (23)

Evidently, these equations allow for many solutions, which are connected
with different gauge fixing conditions for gauge potentials. One may look for
the Lorentz covariant solution, thus one imposes additionally equation (3).
For the Lorentz boosts one imposes

(xl∂0 − x0∂l)Pj = −εljkNk , (xl∂0 − x0∂l)Nj = εljkPk , (24)

while for the spatial rotations one imposes

(xk∂l − xl∂k)Pi(x) = −δliPk(x) + δkiPl(x) , (25)
(xk∂l − xl∂k)Ni(x) = −δliNk(x) + δkiNl(x) . (26)

The consistency condition for all these differential equations becomes ex-
tremely simple

x0∂0D+(x) = xk∂kD+(x) , (27)

which disagrees with the consequence of the scaling invariance of D+(x):
x0∂0D+(x) = (xk∂k − 2)D+(x). Accordingly, there is no Lorentz covariant
form of MWF in the Zwanziger formulation of QED.
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4. Special noncovariant solutions for MWF

In the equal-time (ET) quantization the spatial rotations leave the quan-
tization hypersurface x0 = 0 invariant, thus one may look for a spherically
symmetric solution for Wightman functions. Thus we take from (23)

Pi(x) = ∂i∂0∆
−1 ? D+(x) , Ni = 0 , (28)

where

∂0∆
−1 ? D+(x) = i

+∞∫
−∞

d3k

(2π)3
e−ik·x

2
∣∣∣~k∣∣∣2 =

x0∫
0

dτ D+(τ, ~x ) + i
1

8π

1

|~x|
. (29)

Accordingly, the non-vanishing MWF are

〈0|Ai(x)Bj(0)|0〉 = εijk∂k∂0∆
−1 ? D+(x) , (30)

and one may write in a compact notation as

〈0|Aµ(x)Bν(0)|0〉 = −εµναβ ∂̄α∂β∆−1 ? D+(x) , (31)

where ∂̄µ = ∂µ − tµ∂0 with tµ = (1, 0, 0, 0). Evidently, this solution can
be interpreted as the Coulomb gauge condition for both gauge potentials
∂̄µAµ = ∂iAi = 0 and ∂̄µBµ = ∂iBi = 0. Thus in the ET formulation we
expect the general form of MFW

〈0|Aµ(x)Bν(0)|0〉 = −εµναβ ∂̄α∂β∆−1 ? D+(x) + ∂µΨν(x)− ∂νΨµ(x) , (32)

where Ψµ(x) depends on the gauge fixing conditions.
In the light-front (LF) formulation, we introduce the LC coordinates:

x± = (x0 ± x1)/
√

2, xi = (x2, x3). Now the equation (20) becomes

εij [∂iA+ ∂−Bi − ∂+Ci] = −∂jD+(x) , (33)
εij [−2∂jBi + εij∂+D] = 2∂+D+(x) , (34)
εij [2∂jCi − εij∂−D] = 2∂−D+(x) , (35)

where εij = ε+−ij , i, j = 2, 3, and we denote

〈0|A+(x)B−(0)|0〉 = A(x) , 〈0|Ai(x)B+(0)|0〉 = Bi(x) , (36)
〈0|Ai(x)B−(0)|0〉 = Ci(x) , 〈0|Ai(x)Bj(0)|0〉 = εijD(x) . (37)

We have found the simplest solution

Bi(x) =−εik∂k∂+∆−1⊥ ? D+(x) , Ci(x) = εik∂k∂−∆
−1
⊥ ? D+(x) , (38)

D(x) =A(x) = 0 , (39)
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where

∂i∆
−1
⊥ ? ∂+D+(x) = − xi

8π2x2⊥

1

x+ − i0
+

1

2
∂i

x−∫
0

dξD+

(
x+, ξ, x⊥

)
, (40)

∂i∆
−1
⊥ ? ∂−D+(x) = − xi

8π2x2⊥

1

x− − i0
+

1

2
∂i

x+∫
0

dτD+

(
τ, x−, x⊥

)
. (41)

This solution can be expressed compactly as

〈0|Aµ(x)Bν(0)|0〉 = −εµνα+∂α∂−∆−1⊥ ? D+(x)− εµνα−∂α∂+∆−1⊥ ? D+(x) .
(42)

Thus one may claim that the general form of MFW in the LF formulation
can be expressed as

〈0|Aµ(x)Bν(0)|0〉 = −εµνα+∂α∂−∆−1⊥ ? D+(x)− εµνα−∂α∂+∆−1⊥ ? D+(x)

+∂µΨ
LF
ν (x)− ∂νΨLF

µ (x) , (43)

where ΨLF
µ (x) depends on the gauge fixing conditions.

5. Summary

We have shown that the Lorentz symmetry is broken for the mixed
Wightman functions within the Zwanziger model of QED. Accordingly, only
noncovariant solutions of equation (20) exist. In the ET and LF formula-
tions, different solutions (32) and (43) are preferable. None of them depends
explicitly on the fixed 4-vector nµ, which is used in the Zwanziger formula-
tion. Thus only the gauge terms Ψµ and ΨLF

µ may contain some dependence
on nµ.

This investigation is the first step in the perturbative formulation of the
local QED with electric and magnetic currents, where the independence on
nµ becomes explicit for the gauge invariant quantities. Such independence
on nµ has been proved in [4], when electric and magnetic currents are given
by the closed paths of classical point particles. In our approach, the charged
particle currents are the local quantum field operators.
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