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We study, in the framework of the fluid/gravity correspondence, the
anomaly induced current of a magnetic field and a vortex in a relativistic
fluid. We use a holographic model with pure gauge and mixed gauge-
gravitational Chern–Simons terms in the action, and confirm the results
obtained within the Kubo formulae formalism [K. Landsteiner, E. Megías,
F. Pena-Benitez, Phys. Rev. Lett. 107, 021601 (2011); K. Landsteiner,
E. Megías, L. Melgar, F. Pena-Benitez J. High Energy Phys. 09, 121
(2011)]. The results are obtained in several frames, and we study the
relation between these frames and the boundary conditions when solving
the dynamical equations.
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1. Introduction

The modern understanding of hydrodynamics is as an effective field the-
ory [1]. The equations of motion are the (anomalous) conservation laws
of the energy-momentum tensor and spin one currents. These are supple-
mented by expressions for the energy-momentum tensor and the current
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which are organized in a derivative expansion, the so-called constitutive re-
lations. These relations write in general

〈Tµν〉 = (ε+ p)uµuν + pgµν + 〈Tµν〉diss+anom , (1)
〈Jµ〉 = nuµ + 〈Jµ〉diss+anom . (2)

Here ε is the energy density, p the pressure, n the charge density and uµ the
local fluid velocity. In addition to the ideal hydrodynamical contributions,
there are extra terms which lead to dissipative and anomalous effects. Some
examples of dissipative coefficients are the shear viscosity η [2], bulk viscos-
ity ζ [3] and electric conductivity. Recent studies showed that anomalies
give rise to new non-dissipative transport phenomena at finite temperature
and chemical potential. In particular, an external magnetic field in the fluid
Bµ = εµνρλuν∂ρAλ induces an electric current via the so-called chiral mag-
netic effect [4], and a vortex in the fluid ωµ = εµνρλuν∂ρuλ induces also a
current parallel to the axial vorticity vector, the so-called chiral vortical ef-
fect [5, 6]. These effects are governed by chiral anomalies. Up to this point,
only pure gauge anomalies had been considered to be relevant for first or-
der hydrodynamics, but very recently it has been pointed out that mixed
gauge-gravitational anomalies contribute also to the chiral vortical effect
[7–9]. In this paper, we will study the chiral magnetic and vortical effects in
the strong coupling regime via the fluid/gravity correspondence.

2. Fluid dynamics and gravity

We define in this section a holographic system which realizes a single
chiral U(1) symmetry with a gauge and mixed gauge-gravitational anomaly,
and obtain the equations of motion at first order in the hydrodynamical
expansion. A detailed explanation of the method is presented in [5, 10].

2.1. Holographic model and derivative expansion

We consider an Einstein–Maxwell model in 5 dim, supplemented with
pure gauge and mixed gauge-gravitational Chern–Simons terms [7, 9, 11]

S =
1

16πG

∫
d5x
√
−g
[
R+ 2Λ− 1

4
FMNF

MN + εMNPQRAM

×
(κ
3
FNPFQR + λRA BNPR

B
AQR

) ]
+ SGH + SCSK . (3)

In addition to the usual Gibbons–Hawking boundary term, SGH, a second
boundary term SCSK is needed if we want the model to reproduce the gravita-
tional anomaly at general hypersurface. The covariant form of the anoma-
lous current is (16πG)Jµ = −

√
−γF rµ|∂ , and its divergence leads to the
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standard form of the anomaly for chiral fermions [12]. This we use to fix the
parameters κ = −G/(2π) and λ = −G/(48π). The bulk equations of motion
of the model admit an AdS Reissner–Nordström black-brane solution

ds2 = −r2f(r)uµuνdx
µdxν + r2Pµνdx

µdxν − 2uµdx
µdr , (4)

where Pµν = uµuν + ηµν , and the blackening factor and gauge field write

f(r) = 1− M

r4
+
Q2

r6
, Ar(r) = 0 , Aµ(r) = A(b)

µ −
√
3Q

r2
uµ . (5)

To study the chiral magnetic effect, we consider an external gauge field A(b)
µ

which leads to a background magnetic field Bµ. Eqs. (4)–(5) are a boosted
version of the black-brane solution expressed in Eddington–Finkelstein coor-
dinates, and they are a solution of the e.o.m. only when uµ, M , Q and A(b)

µ

are independent of the space-time coordinates xµ. If one assumes that these
quantities are slow varying functions of xµ, then one can find a solution for
the metric and gauge field valid order by order in a derivative expansion
(see e.g. [5, 10] for details). It is useful to separate the metric and gauge
field in scalar, vector and tensor sectors with respect to uµ. The anomalous
contributions to the constitutive relations at first order in the derivative ex-
pansion come only from the vector sector, so in the following, we will neglect
the other sectors. The metric and gauge field write

ds2 = r2jσ(r)
(
P σµ uν + P σν uµ

)
dxµdxν + . . . , Aµ = aν(r)P

ν
µ + . . . , (6)

where dots indicate scalar and tensor contributions. The functions jµ(r)
and aµ(r) admit a large r (near boundary) expansion of the form jµ(r) =∑∞

n̄=0 j
(n̄)
µ /rn̄ and aµ(r) =

∑∞
n̄=0 a

(n̄)
µ /rn̄.

2.2. Einstein–Maxwell equations

The equations of motion in the vector sector at order n in the derivative
expansion write1

J (n)
µ (r) = ∂r

(
r5∂rj

(n)
µ (r) + 2

√
3Qa(n)

µ (r)
)
, (7)

V (n)
µ (r) = ∂r

(
r3f(r)∂ra

(n)
µ (r) + 2

√
3Qj(n)

µ (r)
)
. (8)

1 Following the notation in [5], superscripts (n) should not be confused with barred
superscripts (n̄), where the latter refers to the order in the near boundary expansion.
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The form of the homogeneous part is the same at any order. Using the
model of (3), the sources at first order write

J (1)
µ (r) = 3r2uν∂νuµ+

96

r5
(
Mr2−5Q2

)
λBµ+

16
√
3Q

r7
(
20Mr2−63Q2

)
λωµ ,(9)

V (1)
µ (r) = −

√
3

r2
(
P νµ∂νQ+Quν∂νuµ

)
− 16
√
3Q

r3
κBµ−

48Q2

r5
κωµ

− 48

r11
(
4M2r4−16MQ2r2+15Q4

)
λωµ . (10)

The first terms in the r.h.s. of (9) and (10) are responsible for dissipative
effects. The terms proportional to Bµ and ωµ are anomalous, and they come
from the CS in the action. The dissipative terms and the one proportional
to κωµ were already obtained in [5, 10]. Here we get new terms coming from
the external magnetic field Bµ, and the gauge-gravitational anomaly2 ∼ λ.
Finally, the non-ideal contributions to the constitutive relations in the vector
sector can be computed at first order in the hydrodynamical expansion as

〈Tµν〉(1) =
1

4πG
j(1,4̄)
σ (P σµ uν+P

σ
ν uµ)+ . . . , 〈Jµ〉(1) = − 1

8πG
a(1,2̄)
µ . (11)

〈Tµν〉 receives extra contributions from the scalar and tensor sectors [13].

3. Fluid frames and boundary conditions

Hydrodynamic constitutive relations depend on the definition of the fluid
velocity, and this specifies a particular frame. In the case of the anomalous
conductivities, it was shown in [14] how the Landau frame conductivities
computed by Son and Surowka [6] can be obtained from a combination of
the charge and energy transport coefficients. Each frame is related to some
specific choice of boundary conditions when solving the equations of motion.
Eqs. (7)–(8) are two differential equations of second order, so one needs four
boundary conditions. Three of them are common for all the frames

jµ(r →∞) = 0 , aµ(r →∞) = 0 , aµ(rh) = finite , (12)

and they are chosen to guarantee that the field theory metric and background
field are not modified, and that they are regular at the outer horizon rh [5].
There is some freedom for the fourth boundary condition, and we will discuss
here three possibilities. The fluid velocity is defined in the Landau frame to
be proportional to the energy flux〈

T 0i
〉
= (ε+ p)ui . (13)

2 Gravitational anomaly effects were studied recently in [11] using a similar approach.
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This means that the non-ideal contributions to the energy-momentum tensor
vanish in this frame, 〈T 0i〉diss+anom = 0, and from (11) one can see that this
frame is obtained with the condition j(4̄)

µ = 0. Likewise, the fluid velocity in
the Eckart frame is defined such that it is proportional to the charge current〈

J i
〉
= nui , (14)

which is equivalent to 〈J i〉diss+anom = 0, and from (11) the Eckart frame
condition is a(2̄)

µ = 0. Transport phenomena related to the generation of an
energy (charge) current are not directly visible in the Landau (Eckart) frame,
rather they are absorbed in the definition of the fluid velocity. It is, there-
fore, more convenient to go to another frame in which we demand that the
definition of the fluid velocity is not influenced when switching on an exter-
nal magnetic field or having a vortex in the fluid: this is the laboratory rest
frame3. We have checked that the anomalous conductivities in this frame
are obtained when imposing the boundary condition, jµ(rh) = 0. This could
indicate that this frame is related to an entropy current J iS , so that [15]4〈

J iS
〉
anom = 0 . (15)

We leave a further analysis to future work [17]. The result for the anomalous
chiral magnetic and vortical effects in a specific frame, F , can be written as

〈Tµν〉(1)
anom = (σεB)

F (Bµuν +Bνuµ) + (σεV )
F (ωµuν + ωνuµ) , (16)

〈Jµ〉(1)
anom = (σB)

F Bµ + (σV )
F ωµ . (17)

The values for the conductivities in three different frames are summarized in
Table I. The terms in the conductivities with only µ dependence come from
the chiral anomaly, and the ones containing T 2 are induced by the gauge-
gravitational anomaly. These expressions are in perfect agreement with the
literature [5, 6, 9–11, 14]. They coincide with the result at weak coupling
[7, 8], and this we take as a strong hint towards a non-renormalization theo-
rem for the anomalous conductivities, at least when gauge fields are absent5.

We get these values by an explicit computation using the boundary con-
ditions specified above. Note, however, that the expressions in two different
frames can be related by a shift in the fluid velocity, uµ → uµ + δuµ, e.g.
the Eckart frame is obtained from the Lab frame by a shift with δuµ =
− 1
n (σBBµ + σV ωµ). This serves as a cross-check of our results.

3 The transport coef. in the Lab frame were derived from Kubo formulae in [7–9, 14].
4 See [11, 16] for a convenient definition of the local entropy current in fluid/gravity.
5 See [18] for a recent study in this direction.
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TABLE I

Anomalous conductivities contributing to the constitutive relations (16)–(17) with
the model of Sec. 2, in three different frames. The results in the Landau and Eckart
frames are written in terms of the conductivities in the Lab rest frame.

Conductivities Laboratory rest frame Landau frame Eckart frame

(σB)
F σB = µ

4π2 σB − n
ε+P σ

ε
B 0

(σV )
F σV = µ2

8π2 + T 2

24 σV − n
ε+P σ

ε
V 0

(σεB)
F σεB = σV 0 σεB − ε+P

n σB

(σεV )
F σεV = µ3

12π2 + µT 2

12 0 σεV − ε+P
n σV

Stability and causality issues of the hydrodynamic equations demand the
knowledge of second order hydrodynamics [5, 10, 19]. A classification of the
terms contributing to this order was obtained in [20]. A computation of the
second order coefficients within the fluid/gravity correspondence with chiral
and gauge-gravitational anomalies including external electromagnetic fields
will be presented in a forthcoming paper [17].
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