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Recently developed numerical method in AdS/CFT correspondence al-
lows for simulation of strongly coupled non-equilibrium expanding N = 4
SYM fluid. This system serves as a testbed for RHIC and LHC quark-gluon
plasma research, as well as a well-defined toy model of strongly coupled,
non-perturbative non-Abelian gauge theory at finite temperature. Appli-
cation of numerical tools allowed to gain some insight into the process of
transition to hydrodynamic regime and also gave a few surprisingly simple
characteristics of hydronization and thermalization process.
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1. Introduction

Non-Abelian gauge theories lay at the very heart of modern understand-
ing of interactions in the Nature. From elementary particles to gravity, all
the forces are mediated by some sort of a gauge field. In the case of the
Standard Model, one can efficiently test the theory by very precise exper-
iments, in which one finds new particles and states of matter. One of the
most recent and most exciting discoveries of this kind, is the observation of
deconfined phase of QCD, namely the celebrated Quark-Gluon Plasma [1].
This new state of matter is focusing a lot of attention due to surprising
properties. It is very heavily coupled, despite high energy, it has very short
thermalization time after which it is well described by hydrodynamics, and
most it is by far the best (near-)perfect fluid known [2].

Unfortunately, although well described by hydrodynamic models, QGP is
still in the domain of non-Abelian gauge theories, and those are notori-
ously difficult to understand at strong coupling. Any insight into the non-
perturbative properties of such theories is desired. Here enters the AdS/CFT
correspondence. The duality [3] originates from superstring theory and
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states, that certain classes of gauge theories are fully equivalent to some
gravitational theories. One of the most widly known is the duality between
N = 4 d = 4 Super-Yang–Mills in the ’t Hooft limit and Einstein gravity
with negative cosmological constant Λ = −. To obtain information about
processess in the field theory one considers evolution of 5-dimensional metric
and other relevand fields, and from its Taylor expansions reads off VEVs of
the operators. The application of the duality to the problem of QGP relies
on the possibility of obtaining the full time evolution of quantum expecta-
tion values of SYM operators at strong coupling from gravity. Basic steps
are the following. We consider 5-dimensional geometry in Poincare patch
(A,B = 0, . . . , 4)

ds2 = GAB(t, x1, x2, x3, z)dx
AdxB =

gµνdx
µdxν + dz

z
, (1)

subject to Einstein equations

RAB − 1
2RGAB − 6GAB = 0 . (2)

The solution is pursued perturbatively in z and exactly in time t, by ex-
panding the metric in the holographic (or bulk) variable, z, ranging from
conformal boundary at z = 0 to the interior of AdS, z →∞

gµν = g(0)
µν + z2g(2)

µν + z4g(4)
µν + z6g(6)

µν + . . . (3)

To solve so expanded Einstein equations, boundary conditions are imposed
on the metric, such that at the boundary z = 0 the metric is Minkowski,
gµν = ηµν , and fourth expansion coefficient is equal to the boundary theory
stress-energy tensor VEV. This also gives the desired relation between the
VEV and the metric solution

〈Tµν〉 =
N2
c

2π2
g(4)
µν . (4)

Equations can be solved with generic ansatz for the VEV, and then from
properties of general relativity (like non-singularity of the geometry) specific
solution should be picked. Then, by expanding the metric, one can retrieve
the desired VEV of gauge theory at strong coupling.

For the specific case of QGP, one very well motivated model of fluid can
be given, going back to Bjorken [4]. Since the collisions involve an extent
medium (the blob is large compared to the micro scale of parton collisions)
and occur at very high energies, one can simplify things by considering boost
invariant, translation and rotation symmetric stress tensor, in proper time-
rapidity coordinates

〈Tµν〉 = Diag
(
ε(τ), τ2pL(τ), pT(τ), pT(τ)

)
. (5)



Non-equilibrium Dynamics of QGP in AdS/CFT Framework 55

Here pL and pT are longitudinal and transverse pressures. It is conserved,
∇µ 〈Tµν〉 = 0 and since N = 4 d = 4 SYM is conformal, also traceless:
〈Tµµ 〉 = 0. Eventually, one is left with only one unknown function, namely
the energy density ε(τ) in the rest frame

〈Tµν〉 = Diag
(
ε(τ),−τ2(ε(τ) + τε′(τ)), ε(τ) + 1

2τε
′(τ), ε(τ) + 1

2τε
′(τ)

)
.
(6)

Time dependence of this quantity should be specified by the dual gravity
theory.

Previous developments in this direction gave several analytic results. In
particular, late and early time evolution of the metric (in proper time τ) was
considered by perturbative means [5, 6]. From those, we know the initial
non-equilibrium stage of the evolution, and we know that at the end, the
field theory should be described by expanding perfect fluid. Very interest-
ing, intermediate stage of transition to some sort of equilibrium remains a
challange, due to non-linear partial differential equations that needs to be
solved (despite the physically justified simplifications). This motivated us
to develop numerical approach that could solve the full non-linear equations
in a non-perturbative manner (without any further expansions in time or
metric coefficients). It turned out that there is a formulation of general
relativity which is very suitable for numerical simulations, and at the same
time makes it possible to use initial data constructed for the analytic early
time investigation. It is the ADM formalism. Another very advantageous
feature of this approach is related to the fact, that the initial data are al-
ways singular [6], which signals the presence of a horizon from the onset.
The ADM nevertheless has an ‘ability’ to cease the evolution at some given
point, effectively excising singular portion of spacetime from the numerical
domain [9]. We thus consider the metric

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2

⊥
u

+
d2(t, u)du2

4u2
,

(7)
where a = cos(u), α is so-called lapse, the shift β is zero, and the extrinsic
curvature reads

Kij = Diag (ta(u)L(t, u),M(t, u),M(t, u), P (t, u)/(4u)) /
√
u . (8)

The space of initial data solving the constraints is parametrized by just
one arbitrary function of u [6, 9], and one can perform numerical integration
in time. Since the metric is time-dependent, we expect the presence of
apparent horizon. Its position in the bulk was tracked with an aid of so-
called expansions. Those functions describe null congruence of geodesics and
reflect the focusing of spacetime. Apparent horizon is defined by the values
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of outgoing and ingoing expansions, obeying

θl = 0 , θn < 0 . (9)

This information was crucial for the numerics, since as mentioned the domain
of integration should not contain singularites. Thus the horizon location was
used as the cut-off.

2. The results

The outcome of integration can be seen in Fig. 1. The bulk variable u
runs horizontally to the right and time flows upwards. The arrows indcate
null geodesics escaping towards the boundary u = 0. Dashed line represents
the apparent horizon, and thickened/red line represents marginally trapped
geodesics, which asymptotically touches the horizon. The color represents
the value of curvature through invariant, R2. At the top, one can see the
formation of singularity, covered by the horizon as it should be.

Fig. 1. (Color online) AdS dynamic black hole, obtained from numerics in ADM
coordinates.

One of the most interesting results is related to the observation of tran-
sition to hydrodynamics (now so-called hydronization), which as it appears,
does not go along with perfect isotropisation [7]. By introducing an effective
temperature and dimensionless parameter

〈Tττ 〉 = ε(τ) = N2
c

3
8π

2T 4
eff(τ) , w(τ) = Teff(τ)τ , (10)

the general equation of hydrodynamics, of arbitrary order in gradients, can
be recast in the dimensionless form

τ

w

d

dτ
w =

Fhydro(w)

w
. (11)
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The right-hand side defines this differential equation, so if one would put
in a known solutions, it should always evaluate to the same value on them.
Thus for all the solutions ε(τ) in the hydrodynamic phase, it should give the
same numbers. One can clearly see this in Fig. 2. Initially, the system is in
a highly non-equlibrium stage, and then (for very different initial data) all
the lines merge in approximately close range of the parameter, w∗ ∼ 0.65.
At the same time, the system is not yet isotropic: pressure anisotropy

∆p = 1− 3pL

ε
= 12

F (w)

w
− 8 (12)

evaluated at w∗ is of the order of 0.6, and agrees with analytic 3rd order
hydrodynamics [7]. Quantity F (w)/w obtained from numerics represents
‘all-order hydrodynamics’, namely, since it is computed from full non-linear
Einstein equations, it incorporates all the infinite number of gradients, as
well as transport coefficients. It may be thought of as a sort of resummation
of hydrodynamic series, and as it is manifest from Fig. 2, it is finite at all
times. The function F (w)/w is known analytically only up to third order,
in boost-invaraint case [8]

Fhydro

w
=

2

3
+

1

9πw
+

1− ln(2)

27π2w2
+

15− 2π2 − 45 ln(2) + 24 ln2(2)

972π3w3
+ . . . (13)

The properties of the ‘all-order’ expression F (w)/w clearly deserve further
attension. In particular, it would be very interesting, to extract from it
higher order transport coefficients, as well as other phenomenologically mo-
tivated data. It is a subject of ongoing research.

Fig. 2. Transition to (‘all-order’) hydrodynamics, observed for all the initial data.

Other characteristics of plasma evolution, that were observed during
this study, are entropy density production ∆s, thermalization time τ thT

(i)
eff
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(in units of effective initial temperature) and thermalization temperature
T

(th)
eff /T

(i)
eff , all as a functions of initial non-equlibrium entropy density. De-

tailed discussion can be found in [7, 9].

3. Conclusions

The numerical scheme used to study full evolution of holographic fluid
turned out to be very fruitful. Several results, inaccessible untill now, could
be brough up to the attention, and some may even cause a shift in paradigm
of phenomenological approach to the QGP physics. It is the idea that
fluid may be well described by viscous hydrodynamics, even at manifestly
anisotropic stage. Thus, one should distinguish between the thermaliza-
tion, i.e. stage where thermodynamic equilibrium has been reached, and the
state, where hydrodynamics can be successfully applied (‘hydronization’).
Further, the introduced resummed hydrodynamics may help to establish a
better criterion for the transition to hydrodynamic regime.

The method also had its drawbacks. The coordinates used suffered from
manifestly present horizons (apparent and event), which causes problems in
numerical integration. Those problems were cured with the aid of ADM
scheme, but not without effort. Alternative approach would be to use
Eddington–Finkelstein coordinates, in which one uses natural characteris-
tics of the equations, namely null observers, as coordinates and removes
explict horizons from the equations [10]. Nevertheless, it seems that there is
a lot of potential in numerical research in AdS/CFT, in the upcoming years.

The work presented and discussed here was performed in collaboration
with Romuald Janik and Michał Heller, for which the author is deeply grate-
ful. Earlier numerical studies of AdS/CFT in QGP context involve e.g. [11]
and later works. The work was financially supported by the Jagiellonian
University grant No. K/DSC/000705.
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