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Theoretical and phenomenological studies indicate that the QCD cou-
pling αs(Q

2) freezes in the infrared. Hadrons may then be described by a
perturbative expansion around “Born” states bound only by a confining po-
tential. A linear potential results from the QCD equations of motion when
Gauss’ law for A0 is solved with F aµνFµνa 6= 0 as boundary condition. The
O(α0

s ) Born states are Poincaré covariant and can serve as |in〉 and 〈out|
states of scattering amplitudes. Their Dirac-type wave functions include
ff̄ creation/annihilation effects giving sea-like partons at low xBj.
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1. Bound states at O
(
α0

s

)
Hadrons are highly relativistic bound states. The mass difference be-

tween excited states is of the same order as light hadron masses, which in
turn are much larger than the u, d, s (current) quark masses. Parton dis-
tributions reveal the relativistic motion of quarks in the nucleon, and the
presence of a non-vanishing sea quark distribution even at low scales [2].

Relativistic dynamics and color confinement are often thought to im-
ply that the QCD coupling αs(Q

2) is large at small momentum scales Q.
Hadrons nevertheless have features which seem difficult to reconcile with a
strongly coupled theory. To name a few:

• Hadron spectra reflect their valence quark (qq̄ and qqq) degrees of
freedom. There is no firm evidence for exotic, glueball or hybrid states.
The sea quarks do not manifest themselves in the excitation spectrum.

∗ Presented at the Light Cone 2012 Conference, Kraków, Poland, July 8–13, 2012.
∗∗ Based on work with D.D. Dietrich and M. Järvinen [1].

(59)



60 P. Hoyer

• The OZI rule [3]. E.g., the φ(1020) decays predominantly to KK̄,
even though this final state is barely allowed kinematically. In a strong
coupling scenario, one would expect little suppression of ss̄ ↔ uū, dd̄
transitions at the mass scale of the strange quark, ms ∼ 100 MeV.

• Perturbation theory explains many features of hadron production down
to low momentum scales [4].

Considerations like the above motivate studying the possibility that αs is
of moderate size even in the confinement domain. This is not as heretical as
it may sound. Several theoretical and phenomenological studies [5] concur
that the strong coupling freezes at a moderate value. The quark model gives
a semi-quantitative understanding of hadrons using the perturbative QCD
potential added to a spin-independent linear potential. Features like the
Σ–Λ mass splitting are then explained by single gluon exchange [6].

How could the confining interaction be self-consistently described theo-
retically, and combined with perturbative QCD? One possibility is to impose
a non-vanishing boundary condition on F aµνF

µν
a in the solution of Gauss’

law [7]. This can be illustrated in QED. Taking the diagonal matrix ele-
ment of −∇2A0(x) = eψ†ψ(x), for a state where an electron is at x1 and
a positron at x2, gives 4πA0(x;x1,x2) = e/|x − x1| − e/|x − x2|. The
standard Coulomb potential is then 1

2 [eA0(x1)− eA0(x2)] = −α/|x1 − x2|.
If a non-vanishing field strength at spatial infinity is imposed

lim
|x|→∞

F aµνF
µν
a (x) = −2Λ4 , (1)

the solution of Gauss’ law includes a homogeneous term

A0(x;x1,x2) = Λ2 ˆ̀ · x+ e/4π|x− x1| − e/4π|x− x2| , (2)

where the unit vector ˆ̀(x1,x2) may depend on the positions of the electron
and the positron but not on x. Stationarity of the action w.r.t. variations
in ˆ̀ sets ˆ̀ ‖ x1 − x2. Thus arises an instantaneous confining interaction in
the Hamiltonian [7]

HΛ = −eΛ
2

4

∫
dx dy ψ†ψ(t,x)|x− y|ψ†ψ(t,y) . (3)

Clearly, we should set Λ = 0 in QED. However, a similar analysis can be
carried out for QCD, where a linear potential is called for by data, lattice
calculations and the quark model. The boundary condition (1) provides a
dimensionful parameter which is not present in the Lagrangian, and which
can be determined to describe (although not explain) confinement. Gauge
covariant bound states exist for color singlet qq̄ mesons and qqq baryons.
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The linear potential in (3) is of O
(
eΛ2

)
and thus leading compared

to the O
(
e2
)
perturbative potential. It was found to provide a Lorentz-

covariant framework for bound states, giving energy eigenvalues with the
correct dependence on the CM momentum [1, 8]. This is non-trivial for
quantization at equal time, and indicates that the implementation of the
non-vanishing boundary condition (1) preserves the Poincaré invariance.

The road thus appears open to a perturbative expansion. The bound
states formed by the linear interaction potential in (3) take the place of
the free |in〉 and 〈out| states normally used in the scattering of pointlike
particles. In effect, one perturbatively expands around “Born terms” which
incorporate confinement but no perturbative interactions.

2. Wave functions

Relativistic dynamics necessarily involves pair creation and annihilation.
This is manifest in the sea quark distribution of the proton, which persists
down to low scales [2]. Consequently, relativistic bound states have an in-
finite number of Fock components. This need not exclude an analytic de-
scription, as demonstrated by the states of an electron in a static Coulomb
field. The bound state energies E are given by the Dirac equation[

−iγ0∇ · γ + eA0(x) +mγ0
]
φ(x) = Eφ(x) (4)

which is obtained by summing all diagrams where the electron interacts with
the external field. As was recognized early on in the “Klein paradox” [9],
the Dirac wave function φ(x) includes e+e− pair effects. Time-ordering of
the electron interactions shows that scattering into negative energy states
corresponds to pair creation and annihilation.

The time-independence of A0(x) in (4) implies that the bound state ener-
gies E are unchanged if retarded (instead of Feynman) electron propagators
are used in all diagrams1. In retarded propagation, only a single (positive or
negative energy) electron is present at any time. The Dirac wave function
φ(x) in (4) describes the electron with this boundary condition. In analogy
to cross sections [10], retarded boundary conditions give inclusive rather
than exclusive charge densities φ†φ(x).

Electron pairs contribute significantly to the Dirac charge density when-
ever the potential is strong (and the dynamics thus is relativistic). Their
contribution generally makes the Dirac wave function unnormalizable [11].
This holds for any potential which is a polynomial in r or in 1/r – except

1 A time-independent external field does not transmit energy. Hence the p0 component
of the electron momentum is preserved. If p0 > −m, the negative-energy pole of the
electron propagator at p0 = −

√
p2 +m2 is never probed. This makes the Green

function G(p0,p) independent of the iε prescription at that pole [7].
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for V (r) ∝ 1/r. Similarly, in D = 1 + 1 dimensions any potential that is a
polynomial in x or 1/x gives unnormalizable wave functions. The absence
of the normalization condition

∫
d3xφ†φ(x) = 1 makes the Dirac energy

spectrum continuous, quite unlike the discrete Schrödinger spectrum2.
Figure 1 (a) shows the Dirac wave function in (4) for the QED2 po-

tential eA0(x) = 1
2e

2|x|. Since m/e = 2.5, the dynamics is nearly non-
relativistic at low |x|, and close agreement with the corresponding solution
of the Schrödinger equation is indeed found for e|x| . 5 if the Dirac solution
is normalized to unity in this region. However, the Dirac wave function starts
to oscillate when the potential reaches twice the electron mass, e|x| ' 10, in-
dicative of contributions from e+e− pairs. Since φ(x→∞) ∼ exp(ie2x2/4),
the Dirac charge density is asymptotically constant.

Fig. 1. Wave functions in D = 1 + 1 dimensions [1]. (a) Comparison of the upper
component ϕ(x) of the Dirac wave function (4) with the Schrödinger wave function
ρ(x) for m/e = 2.5. (b) Comparison of one component of the ff̄ wave function (6)
(for m/e = 4.0) with the Schrödinger wave function (for m/e = 2.0).

Retarded boundary conditions may plausibly be used with the instanta-
neous linear potential3 (3). Then the wave function Φ(x) of an ff̄ bound
state with CM momentum P

|P, t〉 =

∫
dx1dx2 ψ̄1(t,x1) exp [iP · (x1 + x2)/2]Φ(x1 − x2)ψ2(t,x2) |0〉R

(5)
satisfies (for m1 = m2 = m)

i∇x ·
{
γ0γ, Φ(x)

}
− 1

2P ·
[
γ0γ, Φ(x)

]
+m

[
γ0, Φ(x)

]
=
[
E−V (x)

]
Φ(x) , (6)

where V (x) = 1
2eΛ

|x|. The wave function Φ(x) is generally singular at
E = V (x). Requiring Φ(x) to be regular at this point makes the energy

2 This important property is bypassed in most modern textbooks. See also Ref. [12].
3 But not with perturbative Coulomb photon/gluon exchange, which (for finite fermion
masses) transmits energy as well as 3-momentum. See footnote 1.
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spectrum discrete rather than continuous as in the Dirac case. The ff̄
states in D = 1 + 1 were found to transform correctly under boosts [1], and
the energy eigenvalues of (6) satisfy E =

√
P 2 +M2 [8]. Figure 1 (b) shows

one component of the 2×2 wave function Φ(x) form/e = 4, compared to the
Schrödinger wave function with the reduced mass m/e = 2. The comparison
is qualitatively similar to the Dirac case in Fig. 1 (a).

3. Form factors and parton distributions

The matrix element of the electromagnetic current jµ(z) = ψ̄(z)γµψ(z)
between ff̄ bound states (5) gives the form factor [1]

FµAB(z) ≡ 〈B(Pb)|jµ(z) |A(Pa)〉

= ei(Pb−Pa)·z
∫
dx ei(P b−P a)·x/2 Tr

[
Φ†B(x)γµγ0ΦA(x)

]
. (7)

Gauge invariance, ∂µF
µ
AB(z) = 0, holds as a consequence of the bound state

equation (6) satisfied by the wave functions ΦA, ΦB.
The quark distribution of target state A is obtained in the Bjorken limit,

where the photon virtuality and the mass of the final state B tend to in-
finity. Since all states have zero width (before the perturbative corrections)
an averaging procedure needs to be applied. The relative normalization of
the wave functions ΦB can be determined from duality between the contri-
butions of bound states and free quarks to the imaginary parts of current
propagators. Our result for the quark distribution of a relativistic ground
state (m/e = 0.1) in D = 1 + 1 is shown in Fig. 2. The rise of the distri-
bution at low xBj is attributed to ff̄ pairs, indicating again the inclusive
nature of the wave functions obtained with retarded boundary conditions.
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Fig. 2. (a) ff̄ ground state parton distribution in D = 1 + 1 for m/e = 0.1 [1].
(b) The same distribution on a logarithmic scale. The dots are numerical results
and the curve shows an analytic approximation valid at low xBj.
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This presentation is based on a collaboration with D.D. Dietrich and
M. Järvinen. I have benefited from discussions with S. Brodsky. I am
grateful to the Organizers of Light Cone 2012 for their invitation, and for a
travel grant from the Magnus Ehrnrooth Foundation.
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