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1. Introduction

Euclidean relativistic quantum mechanics is a formalism for construct-
ing quantum-mechanical models that have a unitary representation of the
Poincaré group on a model Hilbert space [1]. The advantage of this approach
is that it is straightforward to formulate relativistic few-body models that
satisfy cluster separability along with a spectral condition. A distinctive
feature is that the dynamics is formulated in terms of truncated Euclidean
Green functions rather than a Hamiltonian with few-body interactions. We
discus the construction of Green functions that satisfy reflection positivity,
which is a sufficient condition on the truncated Green functions to ensure
that the Hamiltonian satisfies a spectral condition and for the positivity of
quantum probabilities. We also discuss conditions for establishing the exis-
tence of scattering wave operators and discuss the computation of S-matrix
observables.

Below, we briefly summarize the structure of the theory. A dense set
of vectors in the model Hilbert space, H, is represented by a collection
of functions of Euclidean space-time variables, xi, that have support for
positive relative Euclidean times

f → (f0, f1(x), f2(x1, x2), . . . )
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satisfying

support of fk (x1, . . . , xk) =
{
x1, . . . , xk | 0 < x01 < x02 < x03 < · · · < x0k

}
.

The Euclidean time reflection operator, θ, is defined by θ(x0,xxx) := (−x0,xxx).
The quantum mechanical inner product is expressed in terms of a collection
of Euclidean invariant Green functions

{Gm:n(xm, . . . , x1; y1, . . . , yn)}

by

〈f |g〉 = (f, θGg)E :=
∑
m,n

∫
f∗m(x1, . . . , xm)

×Gm;n(θxm, . . . , θx1; y1, . . . , yn) g(y1, . . . , yn)d
4mxd4ny ,

where the xi variables are final variables and the yi variables are initial
variables. The collection of Green functions are called reflection positive
when 〈f |f〉 ≥ 0 for all functions satisfying the positive relative-time support
condition.

The collection of Green functions satisfy cluster properties if

lim
|a|→∞

Gm:n(xm + a, . . . , xk+1 + a, xk, . . . , x1; y1 + a, . . . , yl + a, yl+1, . . . , yn)

= Gk:l(xk, . . . , x1; y1, . . . , yl)Gm−k,n−l(xm, . . . , xk+1; yl+1, . . . , yn) .

Poincaré generators {H,P ,J ,K} on H are defined by

〈x|H|f〉 :=

{
0,

∂

∂x011
f1(x11),

(
∂

∂x021
+

∂

∂x022

)
f2(x21, x22), . . .

}
,

〈x|P |f〉 :=

{
0,−i ∂

∂ ~x11
f1(x11),−i

(
∂

∂ ~x21
+

∂

∂ ~x22

)
f2(x21, x22), . . .

}
,

〈x|J |f〉 :=

{
0,−i~x11 ×

∂

∂~x11
f1(x11),

−i
(
~x21 ×

∂

∂~x21
+ ~x22 ×

∂

∂~x22

)
f2(x21, x22), . . .

}
,

〈x|K|f〉 :=

{
0,

(
~x11

∂

∂x011
− x011

∂

∂~x11

)
f1(x11),(

~x21
∂

∂x021
−x021

∂

∂~x21
+~x22

∂

∂x022
−x022

∂

∂~x22

)
f2(x21, x22), . . .

}
.

These operators are Hermetian and satisfy the Poincaré commutation rela-
tions on H.
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The invariant mass and transfer matrix, which are dynamical operators,
are easily computed in this representation

〈x|e−βH |f〉 =
(
f0, f1

(
x0 − β,x

)
, f2
(
x01 − β,x1, x

0
2 − β,x2

)
, . . .

)
→

M2 =

(
∂2

∂β2
+

∂

∂a
· ∂
∂a

)
〈x|e−βH−ia·P |f〉|β=0,a=0

=

(
∂2

∂β2
+

∂

∂a
· ∂
∂a

)(
f0, f1

(
x0 − β,x− a

)
,

f2
(
x01 − β,x1 − a, x02 − β,x2 − a

)
, . . .

)
|β=0,a=0

.

These properties are motivated by the Osterwalder–Schrader reconstruction
theorem of local field theory [2]. The difference between the Green functions
of a local field theory and few-body quantum mechanics is that in the quan-
tum mechanical case we only retain a finite number of these functions. In
addition, in local field theory there is only one N -point Green function; while
in the quantum-mechanical case there may be different N -point Green func-
tions corresponding different designations of the initial and final Euclidean
space-time coordinates. The full symmetry in the local field theory case
leads to crossing symmetry, which may be violated in the quantum mechan-
ical case.

The product, 〈f |f〉, is related to the standard Minkowski-space inner
product. This is illustrated in the one-body case by the well-known [3]
calculation

〈f |f〉 =

∫
f∗(x)G1:1(Θx; y)f(y)d

4xd4y

=
1

(2π)4

∫
d4xd4yd4pdmf∗(x)

eip·(θx−y)ρ(m)

p2 +m2
f(y)

=

∫
d3pdmρ(m)

2ωm(p)
|g(p,m)|2 ≥ 0 ,

where the Euclidean and Minkowski wave functions f(x) and g(p,m) are
related by

g(p,m) =
1

(2π)3/2

∫
f(x0,x)e

−ωm(p)x0−ix·pd4x

and the Lorentz invariant measure. d3p/ωm(p), appears naturally.
One of the challenges of constructing models based on the Euclidean

formulation of relativistic quantum mechanics is the problem of finding a
robust class of reflection-positive model Green functions. Two-body trun-
cated Green functions with standard Källén–Lehmann representations are
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reflection positive, as illustrated above. One difficulty with multipoint Green
functions is that reflection positivity is not stable [4] with respect to small
Euclidean invariant perturbations. For example, if one starts with a prod-
uct of reflection-positive free Green function, and solves the Bethe–Salpeter
equation with a small Euclidean-invariant kernel for the four-point Green
function, the resulting Green function is not automatically reflection posi-
tive [4]. On the other hand, Widder [5] demonstrated that the most general
solution in 1 dimension to

∞∫
0

f∗(t)g
(
t+ t′

)
f
(
t′
)
dtdt′ > 0

with increasing g(t), has the form

g(t) =

∫
e−λtρ(λ)dλ =

∫
λ

π

eitp

λ2 + p2
ρ(λ)dpdλ

which has a structure similar to the Källén–Lehmann representation of the
Euclidean Green function. This observations suggest considering integral
representations of connected four-point Green functions of the form

Gc2:2(x2, x1; y1, y2) =

∫
eip1·(x2−x1)eip2·(x1−y1)eip3·(y1−y2)

× g(p1, p2, p3,m2)

(p21 +m2)(p22 +m2
2)(p

2
3 +m2)

d4p1d
4p2d

4p3dm2 .

(1)

Calculations show that this class of Green functions are reflection positive
subject to mild conditions on g(p1, p2, p3,m2). It is straightforward to gen-
eralize this to higher order connected Green functions. What simplifies the
reflection-positivity constraint, compared to the field theory case, is that
the truncated four-point Green functions G1:3(x1 : x2, x3, x4), G2:2(x1, x2 :
x3, x4), and G3:1(x1, x2, x3;x4) do not have to be related. In the local field
theory case they must be identified, which leads to additional restrictions
on g(p1, p2, p3,m2).

Another complication is the formulation of scattering theory. This is be-
cause the dynamics enters in the structure of the Hilbert space inner product,
so there is no asymptotic dynamics. In addition, the real-time evolution op-
erator is difficult to construct in this formalism, while the transfer matrix
involves a simple quadrature. The absence of an asymptotic dynamics can
be treated using the two-Hilbert space formulation of scattering [6]. This
requires solving the one-body problem for subsystems. In this form, time-
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dependent methods can be used to define scattering wave operators and a
simple generalization of Cook’s method can be used to test the existence of
the wave operators.

The first step is to solve the mass eigenvalue problem

〈x|
(
M2 − λ2

)
|λ〉 = 0

for eigenfunctions in the pure point spectrum of M2 associated with a sub-
system Green function. Here 〈x| is a shorthand notation for 〈x1 . . . xm|
which are the initial or final variables of the subsystem Green function.

Next translations and rotations are used to extract sharp momentum
and spin eigenstates of the same mass

〈x|λ,p〉 =

∫
d3a

(2π)3/2
e−ip·a〈x− a|λ〉 ,

〈x|λ, j,p, µ〉 =

∫
SU(2)

dR

j∑
ν=−j

〈
x|λ,R−1p

〉
Dj∗
µν(R) .

These one-particle solutions are used to construct a map from an asymptotic
Hilbert space to the physical Hilbert space by taking symmetrized products
of the “one-particle” plane-wave eigenstates

〈x|Φ|p1, µ1, . . .pk, µk〉 =
∏
i

〈xi1 . . . xini |λi, ji,pi, µi〉 .

Wave operators are defined by

|Ψ±(g1, . . . gn)〉 := lim
t→∞

eiHtΦe−iH0t|g〉 = Ω±|g〉 ,

where |g〉 represents wave packets in the asymptotic particles’ momenta and
spin and H0 =

∑
i ωmi(pi).

A sufficient condition for the existence of this limit is the Cook condi-
tion [7]

±∞∫
0

∥∥(HΦ− ΦH0)e
−iH0t|g〉

∥∥ dt <∞ . (2)

For N = 2 with G4 = G2G2 + Gc4, the G2G2 contribution to ‖(HΦ −
ΦH0)e

−iH0t|g〉‖ vanishes. What remains is a regularity condition that de-
pends only on the truncated four-point function, Gc4. It is interesting to note
that the truncated reflection-positive four-point Euclidean Green functions



94 W. Polyzou

in (1) are distributions rather than short-ranged kernels; however, when one
computes the integrand in (2), it becomes a localized kernel after integrating
over the relative p0 energy variables.

To calculate S-matrix elements the invariance principle [8] can be used,
which allows us to make the replacement

H → w(H) , w(H) = −e−βH , β > 0

in the limits used to define the S-matrix elements

S = lim
n→∞

〈gf |e−ine
−βH0

Φ†e2ine
−βH

Φe−ine
−βH0 |gi〉 .

Because the spectrum of e−βH is compact, for any fixed n, e2ine−βH can be
uniformly approximated by a polynomial in e−βH . Recall that these matrix
elements are related to the transfer matrix, 〈f |T (0, nβ)|g〉 = 〈f |e−nβH |g〉,
which can be calculated using only quadratures. Test calculations [1] demon-
strate that this method can be used to accurately calculate GeV-scale scat-
tering cross sections.
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