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We suggest using the half-width rule to make an estimate of the 1/Nc
errors in hadronic models containing resonances. We show simple conse-
quences ranging from the analysis of meson Regge trajectories, the hadron
resonance gas at finite temperature and generalized hadronic form factors.
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1. Introduction

The Particle Data Group (PDG) tables [1] represent the nowadays con-
sensus of the particle spectrum, and it is quite legitimate to ask the question
on the completeness or redundancy of the states listed there. The quantum
numbers accommodated by the quark model for the u, d, s flavored mesons,
n2S+1LJ furnishes, till now, a complete commuting set of observables. On
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the other hand, since most of these states are unstable, a thorough under-
standing of the physics summarized by the PDG is related to the concept of
a resonance.

However, the hadronic resonances are never observed directly but through
their decay channels, and the corresponding cross section also depends on
the particular production process. The standard and unique quantum me-
chanical definition of a resonance is via a pole in the second Riemann sheet of
the complex-s plane in a scattering amplitude containing such a resonance,
although the (complex) residue depends on the process. This definition has
the advantage of being quite universal regarding the pole position, but can
only be applied if the amplitude can be analytically continued in a reliable
way. Indeed, complex energies cannot be measured experimentally nor sim-
ulated by lattice QCD calculations, and basically an extrapolation is needed;
a potentially uncontrolled arbitrary procedure [2]. Thus, in order to deduce
these poles reliably, one must either have narrow resonances, small back-
grounds, or accurate amplitudes, requirements which are rarely met in the
PDG compilation [1].

There are other and more handy definitions which apply to the physical
and real energy, such as the maximum in the speed plot, the time delay,
or the popular Breit–Wigner definition. While all these definitions should
naturally merge in the limit of narrow resonances, the finite widths build
systematic differences which introduce some inherent dependence on the
background. The upshot of the present discussion is that one should be
concerned with (i) what is the right value to quote, and (ii) to what con-
fidence level can different values be considered as compatible. Again, the
PDG compilation incorporates different processes which quite often rely on
models or parameterizations.

2. Large Nc and the half-width rule

A useful observation is that in the large Nc limit [3, 4] one has Γ/M =
O(N−1

c ) and one finds [5] Γ/M = 0.12(8) both for mesons and baryons
composed of the light u, d, s quarks and listed by the PDG [1]. Most
mesonic and baryonic resonances stem from the q̄q and qqq bound states
which become unstable once they are allowed to decay in the continuum.
We suggest that the maximum level of discrepancy in quoting resonance
mass parameters should just be compatible with its own width, namely the
interval MR ± ΓR/2.

A model-independent way of looking at resonances in QCD is by consid-
ering the two-point correlation functions. Actually, in the quenched approx-
imation one may treat them as standard bound states. Consider for instance
the case of the ρ-meson, which is obtained as a q̄q state from the vector–
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vector correlation function. The Lehman representation of the resonance
two-point function is

D(s) =

∞∫
0

dµ2 ρ
(
µ2
)

µ2 − s− i0+
(1)

suggesting a probabilistic interpretation of the line shape

P (µ) = Zρ(µ) (2)

as a function of the mass µ. For a Breit–Wigner shape, we have

DBW(µ) =
1

µ2 −M2 − iΓµ
→ PBW(µ) =

1

π

2Γµ2

(µ2 −M2)2 + Γ 2µ2)
. (3)

The random implementation for a given distribution is obtained by inverting
the relation

P (µ)dµ = dz (4)

with z ∈ U [0, 1] denoting a uniformly distributed variable1. The half-width
rule (HWR) consists of treating the resonance mass as a random variable
and propagating its effect to all observables

3. Mesonic Regge trajectories

Long ago, it was suggested [6] that linear confinement in quark models
implies the mesons radial Regge trajectories of the form generalizing the
Chew–Frautchi plots for the angular momentum [7]. The analysis of Ref. [8]
of M2

n = M2
0 + µ2n gave µ2 = 1.25(15) GeV2. The HWR amounts to

minimize [9, 10]

χ2 =
∑
n

(
M2

n −M2
n,exp

ΓnMn

)2

. (5)

The construction of these trajectories requires a choice on the possible
quantum-number assignments. Following [10], the global result for the non-
strange mesons was found

M2 = 1.38(4)n+ 1.12(4)J − 1.25(4) . (6)

1 One can also use Gaussian variables for µ which have shorter tails.
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Several models [11, 12], including holographic approaches [13], assume a uni-
versal radial and angular momentum slope, i.e., an exact (n+J)-dependence.
As we can see, there seems to be a significant deviation from this universality,
similarly as in the relativistic quark model [14].

A global fit which does not require a selection of states, but assumes q̄q
completeness, considers the staircase function for the mesons, defined as

Nmesons(M) =
∑

nLSJf,f ′

(2S + 1)Θ
(
M2 − an− bJ − cf,f̄ ′

)
, (7)

where the spin–orbit and tensor force effects are neglected. Within the
mass range 0.5 GeV ≤ M ≤ 1.85 GeV and using ∆M = 10 MeV bins,
it yields a flavor-dependent log-fit with a = 1.40 GeV2, b = 1.10 GeV2

cnn̄ = −1.23 GeV2, cns̄ = csn̄ = −0.40 GeV2 and , css̄ = −0.78 GeV2, in
good agreement with the non-strange single state determination and despite
the fact that the degeneracy plays a role in the fit.

4. Hadronic density of states

A further direct application of the HWR concerns the analysis of the
cumulative hadron number

N(M) =
∑
i

giΘ(M −Mi) , (8)

where Mi are the individual hadronic masses and gi are the corresponding
spin degeneracies (particles and antiparticles are counted separately). This
yields a staircase function which is presented in Fig. 1 when all the PDG
hadrons [1] with the light u, d, s quarks are included. The exponential growth
of N(M) ∼ AeM/TH can be distinctly seen, although, as pointed out in
Ref. ([15–17]), a pre-exponent power cannot be extracted from the data. As
seen in Fig. 1, the effect of taking into account the resonance uncertainty
naturally smooths the data and provides an estimate of the finite width
corrections, hence allowing an error analysis. Using the BW distribution for
the widths, we get TH = 300(75) MeV and A = 1.758(2) with a χ2/d.o.f. =
0.92 in the range 0.5 GeV≤M ≤ 1.85 GeV.

Likewise, the trace anomaly in QCD has been calculated on the lat-
tice [18] and below the cross-over transition to the quark-gluon plasma it
can be represented in the Hadron Resonance Gas as follows

∆ =
ε− 3p

T 4
=

1

T 4

∞∫
0

dM
dN(M)

dM

∫
d3k

(2π)3

(
Ek − ~k · ∇kEk

)
eEk/T ± 1

, (9)
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where Ek =
√
k2 +M2 and ± corresponds to fermions/bosons. As seen

in Fig. 1, the half-width rule provides an error estimate for ∆ in the HRG
which compares favorably with the lattice data of the Wuppertal group [18].
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Fig. 1. Left: Cumulative number of hadrons from the PDG [1] when resonances are
represented as random BW variablesMR±ΓR/2 as a function of the energy. We also
plot the exponential spectrum N(M) = AeM/TH with the Hagedorn temperature
given by TH = 300(75) MeV. Right: Trace anomaly of the Hadron Resonance Gas
implementing the half-width rule compared to the lattice data of Ref. [18].

5. Hadronic form factors

As a final example of the HWR, let us consider hadronic generalized
form factors as analyzed recently [19]. The well-known fact is that in the
large-Nc limit of QCD the generalized hadronic form factors, probing bilinear
q̄q operators with given JPC quantum numbers, feature generalized meson
dominance of q̄q states with the same quantum numbers

〈A(p′)|J(0)|B(p)〉 ∼
∑
n

cAB
n m2

n

m2
n − t

, (10)

where mn are the meson masses and cAB
n the suitable couplings. Thus gen-

eralized form factors at some finite momentum transfer essentially measure
the masses of the lowest lying mesons in the given channel. Saturating with
the minimum number of mesons to yield the known high Q2 and applying
the HWR produces an error band estimate which we show in Fig. 2 for the
pion electromagnetic and transition form factors. Refinements and further
pion and nucleon form factors are presented in [19]. While large-Nc be-
havior of hadronic quantities provides a unique fingerprint of QCD, Quark–
Hadron Duality allows to sidestep the difficult problems by imposing the
short-distance constraints. Using a minimum number of resonances leads to
a sensible parameter reduction. Errors based on the half-width rule provide
a reasonable and large Nc motivated estimate on the uncertainties of form
factors in the space-like region.
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Fig. 2. The monopole form factors F (Q2) = m2
ρ/(m

2
ρ+Q2) Gaussian sampled with

the HWR, ±Γρ/2 = ± 75 MeV. Left: Charge pion form factor, Fγ∗ππ(Q2) = F (Q2).
Right: Transition form factor, Fπγγ∗(Q2) = F (Q2)/(4πfπ).
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