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In this proceedings contribution, we review recent calculations of the
dynamics of the chromo-Weibel instability in the quark-gluon plasma. This
instability is present in gauge theories which possess a one-particle distribu-
tion function which, in the local rest frame, is momentum-space anisotropic.
The conditions necessary for triggering this instability can be present al-
ready in the color-glass-condensate initial state or dynamically generated
by the rapid longitudinal expansion of the matter created in a heavy-
ion collision. Using the hard-loop framework, we study the case that the
one-particle distribution function possesses an arbitrary initial momentum
anisotropy that increases in time due to longitudinal free streaming. The
resulting three-dimensional dynamical equations for the chromofield evolu-
tion are solved numerically. We find that there is regeneration of the lon-
gitudinal pressure due to unstable plasma modes; nevertheless, the system
seems to maintain a high-degree of momentum-space anisotropy. Despite
this anisotropy, we find that there is rapid longitudinal thermalization of
the plasma due to the non-linear mode couplings inherent in the unstable
evolution.
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One outstanding question in the theoretical study of ultrarelativistic
heavy ion collisions is the timescale for and processes involved in the ther-
malization and isotropization of the quark-gluon plasma (QGP). Empirical
evidence in favor of fast thermalization and isotropization of the QGP gener-
ated in heavy ion collisions was provided by the success of phenomenological
relativistic hydrodynamical models [1–9]. The success of these models in de-
scribing the collective flow observed at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC) suggests that the QGP may
become thermal and isotropic on rather short time scales. However, in recent
years, there has been an important realization that successful phenomeno-
logical application of viscous hydrodynamics may not necessarily imply fast
isotropization of the QGP in heavy ion collisions [5, 10–15]. Currently, the
question of the degree of momentum-space isotropy of the QGP generated
in heavy ion collisions is an open question. In this paper, we review recent
numerical calculations [16] which utilize the hard-thermal-loop framework
description of an anisotropic QGP.

Due to the rapid longitudinal expansion of the quark-gluon plasma, one
expects generation of momentum-space anisotropies in the pT–pL plane. In
the weak-coupling limit, the system is expected to be highly-anisotropic at
early times. In weakly-coupled quantum chromodynamics (QCD), the pres-
ence of momentum-space anisotropies induces unstable plasma modes. The
existence and properties of these unstable modes has been studied using ki-
netic theory and diagrammatic methods [17–27]. This instability has been
dubbed the chromo-Weibel instability in reference to the analogous Weibel
instability which exists in Abelian electromagnetic plasmas [28]. In the weak-
field regime with a fixed momentum-space anisotropy, the chromo-Weibel
instability initially causes exponential growth of transverse chromomagnetic
and chromoelectric fields; however, due to non-Abelian interaction between
the fields, exponentially growing longitudinal chromomagnetic and chromo-
electric fields are induced which grow at twice the rate of the transverse field
configurations. Eventually, all components of the unstable gauge-field con-
figurations become of equal magnitude. As a result, one finds strong gauge
field self-interaction at late times and numerical simulations are necessary
in order to have a firm quantitative understanding of the late-time behavior
of the system [23, 29–44].

In order to understand the precise role played by the chromo-Weibel
instability in ultrarelativistic heavy ion collisions, one must include the ef-
fect of the strong longitudinal expansion of the matter. For the first few
fm/c of the QGP’s lifetime, the longitudinal expansion dominates the trans-
verse expansion. Therefore, to good approximation, one can understand
the early time dynamics of the quark-gluon plasma by considering only lon-
gitudinal dynamics. The first study to look at the effect of longitudinal
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expansion was done in the context of pure Yang–Mills dynamics initialized
with color-glass-condensate initial conditions onto which small-amplitude
rapidity fluctuations were added [34]. The initial small-amplitude fluctua-
tions result from quantum corrections to the classical dynamics [35, 43, 45].
Numerical studies have shown that adding spatial-rapidity fluctuations re-
sults in growth of chromomagnetic and chromoelectric fields with amplitudes
∼ exp(2m0

D

√
τ/Qs), where m0

D is the initial Debye screening mass and τ is
the proper time. This growth with exp(

√
τ) was predicted by Arnold et al.

[23] based on the fact that longitudinal expansion dilutes the density.
In this proceedings contribution, we briefly review our recent paper [16]

in which we utilized the hard-expanding-loop framework [46, 47] to numer-
ically determine the evolution of the chromoelectric and chromomagnetic
fields induced by fluctuations of a system of high-momentum particles, which
are undergoing longitudinal free streaming. Due to the fact that the hard
particles are longitudinally free streaming, their local rest frame momentum-
space anisotropy ξ = 1

2〈p
2
T〉/〈p2L〉 − 1 increases as ξ = (τ/τiso)

2 − 1, where
τiso is the proper time at which the distribution function is assumed to be
isotropic. In Fig. 1, we plot the unstable mode growth rate Γ/mD for fixed ξ
as a function of kz/mD, where mD is the Debye mass at the proper time τiso.
As can be seen from this figure, as the degree of momentum-space anisotropy
increases, more and more modes become unstable. Therefore, when one has
a momentum-space anisotropy which is increasing in time, more and more
modes become unstable as time progresses. In fact, one finds that at late
times kz,max ∼ mD

√
τ/τiso, where kz,max is the wavenumber of the highest

mode which is unstable. However, because of the dilution of the particle
density due to the longitudinal free streaming, one finds that the maximal
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Fig. 1. Unstable mode growth rate Γ/mD for fixed ξ as a function of kz/mD, where
mD is the Debye mass at the proper time τiso.
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unstable growth rate decreases with time as Γ ∗ ∼ mD

√
τiso/τ . These two

effects compete with one another, with the former causing unstable growth
at higher and higher wave numbers as time progresses and the later causing
the late time growth to change from a pure exponential to exp

(
2mD

√
ττiso

)
.

Both effects should be taken into account by the dynamical framework for
chromofield evolution.

1. Dynamical framework

We assume that the background particles are longitudinally free stream-
ing and, as a result, the background (hard) particles possess a local rest frame
momentum-space anisotropy which increases monotonically in proper-time
as specified above. Given an isotropic distribution fiso, the corresponding
free-streaming distribution is

f0(p, x) = fiso

(√
p2⊥ + (p′zτ/τiso)2

)
= fiso

(√
p2⊥ + p2η/τ

2
iso

)
.

Following [46], we obtain the dynamical equation obeyed by color perturba-
tions δfa of a color-neutral longitudinally free-streaming momenta distribu-
tion f0 which can be written compactly as

V ·D δfa|pµ = gV µF aµν∂
ν
(p)f0(p⊥, pη) .

This equation must be solved simultaneously with the non-Abelian Yang–
Mills equations which couple the color-charge fluctuations back to the gauge
fields via the induced color-currents jνa

DµF
µν
a = jνa = g tR

∫
d3p

(2π)3
pµ

2p0
δfa(p,x, t) , (1)

whereDα = ∂α−ig[Aα, ·] is the gauge covariant derivative and Fαβ = ∂αAβ−
∂βAα − ig[Aα, Aβ] is the field strength tensor, and g is the strong coupling.
The above equations are then transformed to comoving coordinates with the
metric ds2 = dτ2 − dx2

⊥ − τ2dη2.
The resulting dynamical equations are numerically solved in temporal

axial gauge on a spatial lattice. In order to maintain gauge invariance with
respect to three-dimensional gauge transformations, the spatially-discretized
fields are represented by plaquette variables and evolved along with the
conjugate momentum using a leap-frog algorithm. The fluctuation-induced
currents are represented by auxiliary fields which are discretized in space
and also on a cylindrical velocity-surface spanned by azimuthal velocity and
rapidity. As a result, the simulations are effectively five-dimensional and are,
therefore, computationally intensive. For details concerning the numerical
implementation, we refer the reader to Ref. [16].
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2. Results

We used a five-dimensional lattice size of (N2
T × Nη) × (Nu × Nφ) =

(402 × 128)× (128× 32) with transverse spatial lattice spacing of a = Q−1s

and longitudinal spatial lattice spacing of aη = 0.025. Here, Qs is the nu-
clear saturation scale which is approximately 2 GeV and 1.4 GeV at LHC and
RHIC energies, respectively. For the initial conditions, we seeded current
fluctuations of amplitude ∆ which had a UV spectral cutoff (see Ref. [16]
for details of the spectrum of initial fluctuations). In Fig. 2 (left), we show
the various components of the chromofield energy density as a function of
rescaled proper time τ̃ . For LHC and RHIC initial energy densities, one
unit in τ̃ corresponds to approximately 1 fm/c and 1.4 fm/c, respectively.
For this figure, an initial fluctuation amplitude of ∆ = 0.8 was chosen. As
can be seen from this figure, after approximately 1 fm/c, we begin to see
rapid growth of the transverse chromomagetic field, followed by the trans-
verse chromoelectric field, and then the longitudinal chromofields. In Fig. 2
(right), we show the resulting ratio of the total (particle plus field) longitudi-
nal pressure divided by the total transverse pressure for various values of ∆.
At early times, prior to unstable mode growth, one observes from this figure
that the longitudinal pressure drops due to the longitudinal free streaming
of the hard particle background; however, when the unstable modes begin to
grow, one observes a regeneration of the longitudinal pressure by the unsta-
ble modes which have their wave vectors pointed primarily along the longi-
tudinal direction. In addition, one observes that the time at which isotropy
is restored is primarily sensitive to the initial fluctuation amplitude ∆.

Fig. 2. On the left, we plot the various components of the chromofield energy
density as a function of proper time. On the right, we plot of the total (field plus
particle) longitudinal over transverse pressure as a function of proper time.

In addition to extracting information about the energy density and pres-
sures of the system as a function of proper time, one can also extract in-
formation from the gauge field spectra. The longitudinal spectra can be
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obtained following Ref. [45] by first Fourier transforming each field compo-
nent E⊥(x⊥, η), Eη(x⊥, η), B⊥(x⊥, η) and Bη(x⊥, η), integrating over the
transverse wave vectors and decomposing each according to the longitudinal
wave vector ν, in terms of which the electric and magnetic energy densities
are decomposed into longitudinal energy spectra (see Ref. [16] for details).
One problem with such spectra is that they are not gauge invariant. As
an additional spectral measure, we also extract the transverse momentum-
averaged longitudinal spectra obtained by Fourier-transforming the spatial
distribution of the total field energy density. In Fig. 3 (left), we show the ex-
tracted longitudinal spectra extracted using the first method averaged over
50 runs. The spectra extracted using the second method have similar fea-
tures to the left panel but, due to limited space, we do not show them here
(see the left panel of Fig. 4 in Ref. [48] for this plot). In Fig. 3 (right),
we plot the gauge-field temperature extracted from the spectra via fits to
the form E ∝

∫
dkz

(
k2z + 2|kz|T + 2T 2

)
exp (−|kz|/T ) which is obtained by

integrating a Boltzmann distribution over transverse momenta. In the fig-
ure, we show the fitted temperature obtained from both types of extracted
spectra (the first method is indicated as ‘TL’ and the second method as
‘TL (E)’). In both cases, one sees that after an initial period of cooling, the
gauge sector begins to heat up with the temperatures extracted using the
two methods being approximately the same. We note that the quality of the
fits is extremely good (see Fig. 10 of Ref. [16] for comparisons of the fitted
function to the data at various proper times). The fit function above begins
to describe the observed spectra very well at early times corresponding to
τ̃ ∼ 1 indicating extremely fast longitudinal thermalization of the spectra
even though the system is still highly anisotropic at this moment in time.
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Fig. 3. On the left, we plot the longitudinal spectra at various proper times. On
the right, we plot the extracted longitudinal temperature which was obtained by
a fit (see the text) to the longitudinal spectra (E) or the Fourier-transform of the
spatial energy density (E).
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3. Conclusions

In this proceedings contribution, we have briefly reviewed the recent find-
ings of our three-dimensional hard-expanding-loop simulations. The chief
results were: (i) one sees regeneration of the longitudinal pressure by unsta-
ble chromofield modes, however, the system remains anisotropic for many
fm/c; (ii) despite being anisotropic, there appears to be a rapid longitudi-
nal thermalization due to non-linear mode couplings induced by unstable
mode growth. In the future, we are planning to improve our numerical re-
sults by utilizing much larger lattice sizes and also studying pure Yang–Mills
dynamics in an expanding metric.
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