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Polarization properties of turbulent stochastically inhomogeneous ultra-
relativistic QED plasma are studied. It is shown that the sign of nonlinear
turbulent Landau damping corresponds to an instability of the spacelike
modes and, for sufficiently large turbulent fields, to an actual instability of
a system.
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1. Introduction

Working out a quantitative description of the properties of dense strongly
interacting matter produced in ultrarelativistic heavy ion collisions presents
one of the most fascinating problems in high energy physics. The simplest
(albeit not unique) way of putting the experimental data from RHIC [1]
and LHC [2] into a coherent framework is to describe the essential physics
of these collisions as a hydrodynamical expansion of primordial quark-gluon
matter that, after a short transient period, reaches sufficient level of local
equilibration allowing the usage of hydrodynamics. The features of the ex-
perimentally observed energy flow, in particular the presence of a strong
elliptic flow, suggest early equilibration of the initially produced matter and
small shear viscosity of the expanding fluid, see e.g. the discussion in [3] and
[4] devoted to RHIC and LHC results, respectively.

Can stylized features of primordial quark-gluon matter, in particular its
anomalously low viscosity, be described within a weakly coupled theory, i.e.
as a plasma composed of quasiparticles with the quantum numbers of quarks
∗ Based on the talk presented by A. Leonidov at the International Symposium on
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and gluons? To address this question let us recall that extensive experi-
mental studies of “ordinary” electromagnetic plasma has demonstrated, see
e.g. [5], that it is practically never observed in the state of textbook ther-
mal equilibrium. Realistic description of the properties of experimentally
observed QED plasma is possible only through taking into account the pres-
ence, in addition to thermal excitations, of randomly excited fields. The
resulting state was termed turbulent plasma. Collective properties of turbu-
lent plasmas are markedly different from those of the ordinary equilibrium
plasmas. In particular, they are characterized by anomalously low shear
viscosity and conductivity, dominant effects of coherent nonlinear structures
on transport properties.

Thus, it is natural to consider turbulent QCD plasma as a natural candi-
date for describing the primordial quark-gluon matter in the weak coupling
regime. Calculation of shear viscosity of turbulent QGP performed in [6]
has indeed demonstrated that its shear viscosity is anomalously small. In
the present paper, we focus on studying the leading turbulent contributions
to polarization properties of turbulent relativistic plasma. For simplicity, we
restrict our consideration to the Abelian case. The non-Abelian generaliza-
tion is briefly described in Section 3.

2. Turbulent polarization

2.1. Theoretical formalism

A weakly turbulent plasma is described as perturbation of an equilibrated
system of (quasi-)particles by weak turbulent fields FT

µν . In the collisionless
Vlasov approximation, the plasma properties are defined by the following
system of equations (FR

µν is a regular non-turbulent field)

pµ
[
∂µ − eq

(
FR
µν + FT

µν

) ∂

∂pν

]
f(p, x, q) = 0 ,

∂µ
(
FR
µν + FT

µν

)
= jν(x) = e

∑
q,s

∫
dp pν q f(p, x, q) . (1)

The stochastic ensemble of turbulent fields is assumed to be Gaussian and
characterized by the following correlators〈

FT
µν

〉
= 0 ,

〈
FTµν(x)FTµ′ν′(y)

〉
= Kµνµ′.ν′(x, y) . (2)

In the present study, we use the following parametrization of the two-point
correlator Kµνµ′ν′(x, y) [6]

Kµνµ′ν′(x) = Kµνµ′ν′

0 exp

[
− t2

2τ2
− r2

2a2

]
. (3)
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Turbulent polarization arises as a (linear) response to a regular per-
turbation that depends on turbulent fields. It is fully characterized by the
polarization tensorΠµν(k) defined as a variational derivative of the averaged
induced current 〈jµ(k |FR, FT)〉FT over the regular gauge potential AR

ν

Πµν(k) =
δ
〈
jµ
(
k|FR, FT

)〉
FT

δAR
ν

, (4)〈
jµ
(
k |FR, FT

)〉
FT = e

∑
q,s

∫
dPpνq

〈
δf
(
p, k, q|FR, FT

)〉
FT . (5)

Let us rewrite the kinetic equation in (1) in the following condensed form

f = feq +GpµFµν∂
µ
p f , G ≡ eq

ı((pk) + ıε)
, (6)

where feq is a distribution function characterizing the original non-turbulent
plasma and introduce the following systematic expansion in the turbulent
and regular fields

δf =
∑
m=0

∑
n=0

ρmτnδfmn , Fµν =
∑
m=0

∑
n=0

ρmτnFµνmn , (7)

where powers of ρ count those of FR and powers of τ count those of FT.
Turbulent polarization is described by contributions of the first order in
the regular and the second in the turbulent fields. The lowest nontrivial
contribution to the induced current (5) is thus given by δf12. We have

δf ' δfHTL + 〈δf12〉I + 〈δf12〉II ,

where

δfHTL = GpµF
µν
10 ∂µ,pf

eq ,

〈δf12〉I = Gpµ

〈
Fµν01 ∂ν,pGpµ′F

µ′ν′

10 ∂ν′,pGpρF
ρσ
01

〉
∂σ,pf

eq ,

〈δf12〉II = Gpµ

〈
Fµν01 ∂ν,pGpµ′F

µ′ν′

01 ∂ν′,pGpρF
ρσ
10

〉
∂σ,pf

eq .

2.2. Nonlinear Landau damping and instabilities

Generic expression for the polarization tensor taking into account tur-
bulent effects can be written as

Πij(ω,k ; l) =

(
δij −

kikj
k2

)
ΠT(ω, |k| ; l) +

kikj
k2

ΠL(ω, |k| ; l) , (8)
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where l ≡
√
2(τa)/

√
τ2 + a2. Both longitudinal and transverse components

can be presented as a sum of Hard Thermal Loops (HTL) contributions and
the gradient expansion in the turbulent scale l

ΠL(T)(ω,k ; l) = ΠHTL
L(T)(ω,k) +Πturb

L(T)(ω,k| l) ,

Πturb
L(T)(ω, |k| ; l) =

∞∑
n=1

(|k|l)n

k2

[
φ

(n)
L(T)(x)

〈
E2

turb

〉
+ χ

(n)
L(T)(x)

〈
B2

turb

〉]
,(9)

where x = ω/|k| and the standard HTL contribution read

ΠHTL
L (ω, |k|) = −m2

Dx
2
[
1− x

2
L(x)

]
,

ΠHTL
T (ω, |k|) = m2

D

x2

2

[
1 +

1

2x

(
1− x2

)
L(x)

]
,

L(x) ≡ ln

∣∣∣∣1 + x

1− x

∣∣∣∣− ıπθ(1− x) , m2
D = e2T 2/3 . (10)

The computation of turbulent polarization was carried out to second order
in the gradient expansion [7]. In what follows, we restrict ourselves to dis-
cussing the leading contribution to the imaginary part of the polarization
function corresponding to the turbulent modification of Landau damping
in (10)

Im ΠT(ω,k ; l) ' −πm2
D

x

4

(
1− x2

)
θ(1− x)

+
(|k|l)
k2

(〈
E2
〉
Im φ

(1)
T (x) +

〈
B2
〉
Im χ

(1)
T (x)

)
, (11)

Im ΠL(ω,k ; l) ' −πm2
D

x3

2
θ(1− x)

+
(|k|l)
k2

(〈
E2
〉
Im φ

(1)
L (x) +

〈
B2
〉
Im χ

(1)
L (x)

)
. (12)

The functions Im φ
(1)
L,T and Im χ

(1)
L,T are shown in Fig. 1. The conclusions

following from Fig. 1 can be formulated as follows:

1. Timelike domain. From Fig. 1, we see that the sign of the imag-
inary part of the turbulent contribution to the polarization operator
in the timelike domain x > 1 is negative and corresponds to turbulent
damping of timelike collective excitations. This refers to both trans-
verse and longitudinal modes. As the HTL contribution in this domain
is absent, this turbulent damping is a universal phenomenon present
for all ω, k such that ω > k and all values of the parameters involved
(l, 〈B2〉, 〈E2〉). The turbulent damping leads to an attenuation of the
propagation of collective excitations at some characteristic distance.
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2. Spacelike domain. The situation in the spacelike domain x < 1
is more diverse. In contrast with the timelike domain, the gradient
expansion for the imaginary part of the polarization tensor starts from
the negative HTL contribution corresponding to Landau damping. As
seen from Fig. 1, the imaginary parts of turbulent contributions to the
longitudinal polarization tensor are negative and are thus amplifying
the Landau damping. The most interesting contributions come from
the turbulent contributions to the transverse polarization tensor. We
see that the electric contribution Im[φ

(1)
T (x)] in the spacelike domain is

positive at all x while the magnetic contribution Im[χ
(1)
T (x)] is negative

for x < x∗ ≈ 0.43 and positive for x > x∗. This means that the
turbulent plasma becomes unstable for sufficiently strong turbulent
fields.
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Fig. 1. The polarization functions (6π3/2/e4) Im
[
φ (1)(x)

]
(solid lines) and

(6π3/2/e4) Im
[
χ (1)(x)

]
(dashed lines). Left: transverse response; Right: longi-

tudinal response.

3. Comments and conclusions

Let us briefly discuss some relevant points:

1. The above presented results are obtained in the framework of a pertur-
bative expansion based on two crucial assumptions. First, one assumes
slow temporal evolution of the distribution function due to particle in-
teraction with turbulent fields thus neglecting the corresponding f0n
contributions. Second, changes in the distribution function are treated
as small. This, in turn, means that turbulent fields should be small
enough. In this sense, the reliable results refer to small modifications
of Landau damping but, as the onset of turbulent instability takes
place for parametrically large fields, this result should be considered
as a qualitative indication.
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2. The observed instability can be termed “secondary” because the tur-
bulent fields themselves result from some “first level” instabilities. The
origin of the effect is in turbulent stochastic inhomogeneity and thus
similar to stochastic transition radiation, which vanishes in the limit
l→ 0 [8].

3. The non-Abelian generalization of the above-described results for the
imaginary part of the polarization tensor leads to identical expressions,
the only difference being in trivial color factors, just as in the HTL
case.
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