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We present some results pertaining quantities which are regarded as
good indicators of the pseudo-critical temperatures for the deconfinement
and partial chiral restoration transitions using a polynomial form for the
Polyakov potential part and an extended version of the NJL model which
includes 6- and 8-quark interaction terms. Some comparisons with results
from the lattice formulation of QCD (lQCD) are performed and results for
the location of the critical endpoint in the phase diagram are also presented.
It is shown that the comparison with lQCD results favours a moderately
strong OZI-violating 8-quark interaction term.
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1. Introduction

Low energy effective models are a valuable tool for the study of the
low-energy thermodynamic properties of strongly interacting matter. Their
importance is even greater in the case of finite chemical potential, where the
sign problem afflicts the more fundamental approach of using lQCD.

Two of the main features of the non-perturbative regime of QCD are
the spontaneous breaking of chiral symmetry and confinement. For both,
a transition is expected to occur at finite temperature and/or chemical po-
tential: partial restoration of chiral symmetry and deconfinement (with the
spontaneous breaking of the Z(Nc) centre symmetry).

The NJL model [1] incorporates by construction a mechanism for the
dynamical breaking of chiral symmetry and shares with QCD its global
symmetries. The unwanted axial symmetry can be removed by the inclusion
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of a ’t Hooft determinantal [2–4] term this, however, introduces a vacuum
stability problem when considering the light quark sector (u, d and s quarks).
This issue can be solved by further extending the model to include 8-quark
interaction terms [5, 6].

A partial inclusion of the gluonic degrees of freedom can be done through
the consideration of a static background homogeneous temporal gauge glu-
onic field coupled to the quark fields through the covariant derivative [7]. The
Polyakov loop can then be used as an approximate order parameter for de-
confinement (it vanishes for the confined phase). An additional temperature-
dependent pure “gluonic” term, the Polyakov potential, U , for which several
forms have been proposed, must also be introduced to drive the transition.
Due to space constraints, here, we will only present results referring to the
polynomial form as proposed in [8] (furthermore, the results are qualitatively
similar with the other forms tested).

The specification of a non-renormalizable effective model is not complete
without the choice of a regularization procedure. In the present study, we
will use a Pauli–Villars regulator with two subtractions in the integrand [9].
In [10], we have shown that using this we can obtain the expected high-
temperature asymptotic behaviour for the PNJL model while consistently
using the same regularization procedure for both the vacuum and medium
contributions for the relevant integrals.

The thermodynamic potential is given by (for more details see [10, 11])
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Here, G, κ, g1, g2 refer to the coupling strengths of the 4q (NJL term),
6-quark (’t Hooft determinant) and OZI-violating and non-violating 8-quark
interactions respectively. Mf and hf (f = u, d, s) refer to the dynamical
masses and the condensates which must satisfy the conditions (mf refers to
current masses)
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J−1 and C (a mass independent, but T, µ dependent, term which must be
added to ensure thermodynamic consistency [10, 11]) are given by
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Here, E is the energy and nq/nq refer to the occupation numbers (the sub-
script 0 refers to the occupation number for massless particles). The exten-
sion to include the Polyakov loop in the J−1 integrals can be done straightfor-
wardly by noticing that its phase enters the action as an imaginary chemical
potential and modifying the occupation numbers accordingly. The regulator
was chosen to be ρ̂Λ = 1−

(
1− Λ2∂M2

)
exp

(
Λ2∂M2

)
.

2. Transition signals

Several quantities are expected to undergo a rapid change during the
transitions acting, therefore, as a signal for the determination of the pseudo-
critical temperatures (note that with physical quark current masses both the
chiral and the Z(Nc) centre symmetries are only approximate; they are only
exact in the chiral and quenched limit respectively). Besides a rapid change
in the condensates and Polyakov loop, one also expects a distinct signal
coming from the chiral, quark number and Polyakov loop susceptibilities
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The use of the dual chiral condensates has been suggested as a possi-
ble additional indicator for deconfinement [12]. These correspond to the
Fourier transform with respect to an angle which is introduced through the
consideration of twisted temporal boundary conditions
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where hi(α) is given by ∂Ω
∂hi

= 0 with µ → µ + ıTα, (with −π ≤ α < π).
Results for the temperature dependence of the dressed Polyakov loop (which
corresponds to setting j = 1 in the above) will also be presented here.

3. Results

As we reported in [6], it is possible to obtain the same low energy scalar
and pseudoscalar mesonic spectra throughout a large range of values for the
OZI-violating 8-quark coupling strength by simultaneously lowering G when
increasing g1 (except for the σ meson mass which decreases for higher g1).
Here, we will focus, therefore, on the impact of this choice in the transitions
behaviour. Another parameter, T0, coming from the polynomial form of U
has also to be taken into account (it sets the temperature scale for the
temperature dependence of U).

As can be seen in Fig. 1, the chiral condensates, the Polyakov loop and
the dual chiral condensates undergo a rapid change in a narrow temperature
range signalling the transitions. The change is more rapid and occurs at
a lower temperature for stronger 8-quark interactions. The behaviour of
the dressed Polyakov loop closely follows that of the chiral condensate and
the zeros of the second derivative with respect to the temperature are, in
fact, very close to each other (a few MeV apart at most). The temperature
dependence of the susceptibilities is also strongly influenced by the value of g1
as can be seen in Fig. 2: the peaks get sharper and higher with increasing g1.
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Fig. 1. Temperature dependence of: (left) the Polyakov loop (full lines starting
at zero) and chiral condensates divided by the peak value (light in full lines and
strange with dashed lines); (right) the dressed Polyakov loop (light in full lines and
strange in dashed lines). The different sets correspond to different values for g1
in the PNJL model, U|T0=190 MeV, g1 × 10−3 = 1, 5, 6.5, 8 GeV−8 (for the chiral
condensates and dressed Polyakov loop lower lines correspond to higher g1, whereas
for the Polyakov loop it is the opposite).
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Fig. 2. Temperature dependence of susceptibilities in the PNJL model (U with T0 =

190 MeV) for different values of g1 at vanishing chemical potential. Top row from
left to right: light quark chiral susceptibility, strange quark chiral susceptibility
and Polyakov loop susceptibility. Bottom row: temperature derivative of the light
and strange quark number susceptibilities. In all of these panels, the sharper
peaks correspond to stronger OZI-violating 8-quark interactions (the same sets as
in Fig. 1).
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Fig. 3. Interaction measure (g1 = 6000 GeV−8, T0 = 0.190, 0.210, 0.230 GeV;
higher T0 results in a lower and more shifted to the right peak) and the subtracted
chiral condensate (T0 = 210GeV for comparison we also show in dashed lines the
result obtained with the logarithmic form of U from [14]) compared to lQCD results
(data taken from [13]). Temperature (positive slope lines) and chemical potential
(negative slope lines) of the CEP as a function of g1 for T0 = 190, 210, 250 MeV

(higher T0 corresponds to thicker lines) as well as for the NJL model.
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A comparison with lQCD results (see Fig. 3 (left) and (middle)) for
several quantities such as the interaction measure and the subtracted chiral
condensate gives a reasonable result. The deviation from the lQCD result
in what refers to the subtracted chiral condensate is probably related to the
slow chiral restoration of the strange quark (Fig. 1 (left)). The position of
the critical endpoint of QCD in the phase diagram is also strongly affected
by the value of g1 as can be seen in Fig. 3 (right). The T0 parameter from U ,
on the other hand, seems to affect only the temperature at which it occurs
and not the chemical potential.
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