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The energy loss per unit path length of a highly energetic parton scat-
tering elastically in a weakly coupled quark-gluon plasma is studied as an
initial value problem. The approach is designed to study unstable plasmas
but in the case of an equilibrium plasma the well known result is repro-
duced. An extremely prolate plasma, where the momentum distribution is
infinitely elongated along one direction, is considered here. The energy loss
is shown to be strongly time and directionally dependent and its magnitude
can much exceed the energy loss in equilibrium plasma.
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1. Introduction

When a highly energetic parton travels through a quark-gluon plasma
(QGP), it loses its energy due to, in particular, elastic interactions with
plasma constituents. This is called collisional energy loss which for equi-
librium QGP is well understood [1]. The quark-gluon plasma produced in
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relativistic heavy-ion collisions, however, reaches a state of local equilibrium
only after a short but finite time interval, and during this period the momen-
tum distribution of plasma partons is anisotropic. Consequently, the system
is unstable (for a review see [3]). Collisional energy loss has been computed
for an anisotropic QGP in Ref. [2], but the fact that unstable systems are
explicitly time dependent as unstable modes exponentially grow in time was
not taken into account.

We have developed an approach, see [4, 5] for a preliminary account,
where energy loss is studied as an initial value problem. The approach is
applicable to plasma systems evolving quickly in time. We compute the en-
ergy loss by treating the parton as an energetic classical particle with SU(Nc)
color charge. For an equilibrium plasma, the known result is recovered and
for an unstable plasma, the energy loss is shown to have contributions which
exponentially grow in time. In Refs. [4], we have calculated the energy loss
in a two-stream system which is unstable due to longitudinal chromoelec-
tric modes and found that it manifests strong time and directional depen-
dence. In Ref. [5] and here, we focus on an extremely prolate quark-gluon
plasma with momentum distribution infinitely elongated in the beam direc-
tion. Such a system is unstable due to transverse chromomagnetic modes
and the spectrum of collective excitations can be obtained in explicit ana-
lytic form. The system has thus nontrivial dynamics but the computation of
energy loss is relatively simple. After a brief presentation of our approach,
we show some of our results.

2. Formalism

Using the Wong equations [6], which describe the motion of classical
parton in a chromodynamic field, one writes down the parton’s energy as

dE(t)

dt
= gQaEa(t, r(t)) · v , (1)

where g is the QCD coupling constant, gQa is the parton color charge,
Ea(t, r) is the chromoelectric field and v is the parton’s velocity which is
assumed to be constant and v2 = 1. Since we deal with an initial value
problem, we apply to the field not the usual Fourier transformation but the
one-sided Fourier transformation defined as

f(ω,k) =

∞∫
0

dt

∫
d3rei(ωt−k·r)f(t, r) , (2)

f(t, r) =

∞+iσ∫
−∞+iσ

dω

2π

∫
d3k

(2π)3
e−i(ωt−k·r)f(ω,k) , (3)
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where the real parameter σ > 0 is chosen is such a way that the integral over
ω is taken along a straight line in the complex ω-plane, parallel to the real
axis, above all singularities of f(ω,k). Introducing the current generated by
the parton ja(t, r) = gQavδ(3)(r − vt), Eq. (1) can be rewritten as

dE(t)

dt
= gQa

∞+iσ∫
−∞+iσ

dω

2π

∫
d3k

(2π)3
e−i(ω−ω̄)t Ea(ω,k) · v , (4)

where ω̄ ≡ k · v. The next step is to compute the chromoelectric field Ea.
Applying the one-sided Fourier transformation to the linearized Yang–Mills
equations, which represent QCD in the Hard Loop approximation, we get

Eia(ω,k) = −i
(
Σ−1

)ij
(ω,k)

[
ωjja(ω,k) + εjklkkBl

0a(k)− ωDj
0a(k)

]
, (5)

where B0 and D0 are the initial values of the chromomagnetic field and the
chromoelectric induction, and Di

a(ω,k) = εij(ω,k)Eja(ω,k) with εij(ω,k)
being chromodielectric tensor; Σij(ω,k) ≡ −k2δij + kikj + ω2εij(ω,k).

Substituting the expression (5) into Eq. (4), we get the formula

dE(t)

dt
= gQavi

∞+iσ∫
−∞+iσ

dω

2πi

∫
d3k

(2π)3
e−i(ω−ω̄)t

(
Σ−1

)ij
(ω,k) (6)

×
[
iωgQavj

ω − ω̄
+ εjklkkBl

0a(k)− ωDj
0a(k)

]
.

As seen, the integral over ω is controlled by the poles of the matrix Σ−1(ω,k)
which represent the collective modes of the system.

When the plasma is in equilibrium, all modes are damped and the poles
of Σ−1(ω,k) are located in the lower half-plane of complex ω. Consequently,
the contributions to the energy loss corresponding to the poles of Σ−1(ω,k)
exponentially decay in time. The only stationary contribution is given by
the pole ω = ω̄ ≡ k · v. Therefore, Eq. (6) provides

dE

dt
= −ig2CR

∫
d3k

(2π)3

ω̄

k2

[
1

εL(ω̄,k)
+

k2v2 − ω̄2

ω̄2εT(ω̄,k)− k2

]
, (7)

where the color factor CR, which equals N
2
c−1

2Nc
for a quark and Nc for a gluon,

results from the averaging over colors of the test parton. The formula (7)
agrees with the standard result [1].
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To compare the energy loss in an unstable plasma to that in an equi-
librium one, we have computed the integral in Eq. (7) numerically using
cylindrical coordinates, which will also be used for the prolate system. Since
the integral is known to be logarithmically divergent, it has been taken over
a finite domain such that −kmax ≤ kL ≤ kmax and 0 ≤ kT ≤ kmax. The en-
ergy loss in an equilibrium plasma of massless constituents can be expressed
through the Debye mass, which we write as

µ2 ≡ g2

∫
d3p

(2π)3

f(p)

|p|
. (8)

When the plasma is unstable, the matrix Σ−1(ω,k) has poles in the
upper half-plane of complex ω, and the contributions to the energy loss
from these poles grow exponentially in time. Using the linearized Yang–
Mills equations, the initial values B0 and D0 are expressed through the
current and

dE(t)

dt
= g2CRv

ivl
∞+iσ∫
−∞+iσ

dω

2π

∫
d3k

(2π)3
e−i(ω−ω̄)t

(
Σ−1

)ij
(ω,k)

×
[
ωδjl

ω − ω̄
−
(
kjkk− k2δjk

)(
Σ−1

)kl
(ω̄,k) + ω ω̄ εjk(ω̄,k)

(
Σ−1

)kl
(ω̄,k)

]
, (9)

which gives the energy loss of a parton in an unstable quark-gluon plasma.
When the anisotropy of the momentum distribution of plasma constit-

uents is controlled by a single (unit) vector n, it is not difficult to invert
the matrix Σ. Following [7], we introduce the vector nT defined as niT ≡
(δij − kikj/k2)nj and we use the basis of four symmetric tensors: Aij(k) ≡
δij − kikj/k2, Bij(k) ≡ kikj/k2, Cij(k,n) ≡ niTn

j
T/n

2
T and Dij(k,n) ≡

kinjT + kjniT. Since the matrix Σ is symmetric, it can be decomposed as
Σ = aA+ bB + cC + dD and the inverse matrix equals

Σ−1 =
1

a
A+

−a(a+ c)B +
(
−d2k2n2

T + bc
)
C + adD

a
(
d2k2n2

T − b(a+ c)
) . (10)

The poles of Σ−1 determine collective excitations in the plasma system.
Substituting the matrix Σ−1 in the form (10) into Eq. (9), we get the

energy-loss formula used in the subsequent section to compute the energy
loss in an extremely prolate QGP.

3. Extremely prolate plasma

Anisotropy is a generic feature of the parton momentum distribution
in heavy-ion collisions. At the early stage, when partons emerge from the
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incoming nucleons, the momentum distribution is strongly elongated along
the beam — it is prolate — with 〈p2

T〉 � 〈p2
L〉. Due to free streaming, the

distribution evolves in the local rest frame to a form which is squeezed along
the beam — it is oblate with 〈p2

T〉 � 〈p2
L〉. We consider here the extremely

prolate momentum distribution which can be written as

f(p) = δ
(
p2 − (p · n)2

)
h(p · n) , (11)

where h(x) is any positive even function such that
∫
d3f(p) is finite. The

integral in Eq. (8) can be used to define a mass parameter for either isotropic
or anisotropic momentum distributions, although in the later case µ−1 can-
not be interpreted as the screening length.

With the distribution (11), one finds the matrix Σ which is then inverted.
The poles of Σ−1 provide a spectrum of collective excitations which are

ω2
1(k) = 1

2µ
2 + (k · n)2 , ω2

2(k) = 1
2µ

2 + k2 , (12)

ω2
±(k) = 1

2

(
k2 + (k · n)2

±
√

k4 + (k · n)4 + 2µ2k2 − 2µ2(k · n)2 − 2k2(k · n)2
)
. (13)

The modes ω1, ω2 and ω+, are always stable. The solution ω2
− is negative

when m2k2 > m2(k · n)2 + k2(k · n)2. Writing ω2
− = −γ2, 0 < γ ∈ R, the

solutions are ±iγ. The first is the Weibel unstable mode and the second is
an overdamped mode. Collective excitations in the extremely prolate QGP
were earlier studied in [8] using a method different than ours.

The energy loss in the extremely prolate system is controlled by the
double pole at ω = 0 and 8 single poles: ω = ±ω1, ω = ±ω2, ω = ±ω+,
ω = ±ω−. Since the collective modes are known analytically, the integral
over ω is computed analytically as well. The remaining integral over k
is computed numerically using the cylindrical coordinates with the z axis
along the vector n. Since the integral is divergent (as is the case in equi-
librium (7)), we choose a finite domain such that −kmax ≤ kL ≤ kmax and
0 ≤ kT ≤ kmax with kmax = 5µ. The values of remaining parameters are:
g = 1, CR = Nc = 3. In Fig. 1, we show the parton’s energy loss per unit
time as a function of time for three different orientations of the parton’s
velocity v with respect to the z axis. The energy loss manifests a strong
directional dependence and it exponentially grows in time, indicating the
effect of instabilities. After a sufficiently long time, the magnitude of en-
ergy loss much exceeds that in equilibrium plasma which equals 0.18 g2µ2

for kmax = 5µ.
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Fig. 1. The parton energy loss per unit time as a function of time for three angles Θ
between the parton’s velocity v and the axis z. The top (red) points correspond
to Θ = 0, the middle (blue) ones to Θ = π/12 and the bottom (purple) points to
Θ = π/6. The solid lines represent the exponential fits to the computed points.

4. Conclusions

We have developed a formalism, where the energy loss of a fast parton in
a plasma medium is found as the solution of an initial value problem. The
formalism, which allows one to obtain the energy loss in an unstable plasma,
is applied to an extremely prolate quark-gluon plasma with momentum dis-
tribution infinitely elongated in the z direction. This system is unstable due
to chromomagnetic transverse modes. The energy loss per unit length of a
highly energetic parton exponentially grows in time and exhibits a strong
directional dependence. The magnitude of the energy loss can much exceed
the equilibrium value.

This work was partially supported by the Polish National Science Centre
under grant 2011/03/B/ST2/00110.
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