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Potential-NRQCD offers an effective-theory based approach to heavy-
quark physics. While meson QQ̄ computations are tractable in pure
αs-perturbation theory, more complex many-body quark systems transcend
it. A possibility inherited from nuclear physics is to employ the perturba-
tive static potentials in a numerical diagonalization, eventually obtaining
the exact lowest eigenvalue in each channel for a given-order perturbative
potential. The power counting is manifest in the potential instead of the
spectrum. The NNLO-potential for the 3-body problem is already avail-
able, so we have addressed triply-heavy baryons in this initial work with
a computer-aided 2-parameter variational treatment.
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1. pNRQCD 3-quark potentials, including intrinsic 3-body force

The LO potential of three heavy quarks in pNRQCD [1] is a (∆-shaped)
sum of 2-body Coulomb interactions dependent on pairwise coordinates
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The Hamiltonian resulting from adding the heavy-quark kinetic energy
to this potential has already been variationally treated in the past [2]. This
potential is simple enough for analytical approximations to the ground-state
binding energy to be possible, but the situation changes drastically when
adding NLO and NNLO potentials. The full NLO and part of the NNLO
ones are still ∆-shaped and mimic the two-body potential in a meson

V
(0)
LO +V

(0)
NLO =

−2

3

∑
i

αs

(
|ri|−2

) 1

|ri|

[
1+

αs

(
|ri|−2

)
4π

(2β0γE+a1)

]
, (2)

V
(0)
NNLO−2 =

−2

3

∑
i

αs

(
r−2
i

)
|ri|

αs

(
r−2
i

)2
(4π)2

×
(
a2 − 36π2 + 3π4 +

(
π2

3
+4γ2E

)
β20 + γE(4a1β0+2β1)

)
(3)

but at NNLO an intrinsic 3-body part is also present. It is a consequence of
Yang–Mills theory being non-Abelian, thus featuring a three-gluon vertex:
the Feynman diagram is depicted in the left plot of figure 1. This intrinsic
3-body force is simplest in momentum space (a fast Fourier algorithm easily
transforms potentials between momentum and coordinate representations)
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Fig. 1. Left: Feynman diagram yielding an intrinsic 3-quark force in a non-Abelian
gauge theory. Right: computed mass difference due to the addition of such force.
This is good news for Faddeev baryon calculations: at least in the heavy-quark
limit we can state that 3-body forces are small [3].



Triply Heavy Baryon Mass Estimated Within pNRQCD 823

We also advance in the figure (right plot) our numerical estimate of this
3-body force on the ΩQQQ JP = 3/2+ baryons for QQQ = ccc, ccb, bbc, bbb.
We found it to be of the order of 30–40 MeV by computing the spectrum
with and without V̂ (0)

NNLO−3 from Eq. (4). We appraise the effect as too small
for unambiguous theory to extract it from the ground-state spectrum alone.

In addition to the static potential, we have also considered the first 1/m
correction, that to this order is also the sum of 2-body potentials [4]
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Its effect on the triply heavy baryons, shown in figure 2, is moderate.
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Fig. 2. Triply heavy-baryon mass shifts due to the subleading 1/mQ potential.

2. Variational, numerical treatment of the 3-body problem

The three-body (and more so the many-body) problem is not analytically
tractable with non-trivial potentials. We, therefore, resort to a numerical,
variational treatment. This is in the spirit of modern nuclear physics [5],
where scattering observables or spectra require solving a many-body equa-
tion, and the perturbative counting is manifest in the underlying potential.
Before embarking into baryons, we worked out several meson observables
within the same framework, but we [6] and others [7] already documented
these methods. Here, we just comment briefly on the 3-body problem.

In the spirit of [8, 9], we proceed variationally with a simple wave-
function ansatz. This is used with the pNRQCD Hamiltonian through the
Rayleigh–Ritz variational principle, an upper bound to the binding energy〈

ψαραλ |HpNRQCD|ψαραλ
〉〈

ψαραλ |ψαραλ
〉 ≥ E0 . (6)
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We vary the two parameters αρ, αλ to find the optimum energy upper-
bound for the ansatz. These two parameters control the momentum-space
spread in the 3-body Jacobi-coordinates, that for a hadron at rest read

kρ ≡
k1 − k2√

2
, kλ ≡

√
3

2
(k1 + k2) , k3 ≡ −k1 − k2 . (7)

We choose as ansatz ψ(kρ, kλ)αραλ = Y00(kρ)Y00(kλ)e−kρ/αρ−kλ/αλ , although
we have also checked other forms such as a rational function, with consistent
results. The error incurred in this variational approximation is estimated by
employing the same technique for three atomic-physics systems (orthohe-
lium, parahelium, and the dihydrogen-cation).

Figure 3 presents several pNRQCD predictions for the Ωccc 3/2+ mass.
The left-most point is the estimate of Jia based on Eq. (1). The solid, black
points in the pole scheme (see below) show very reasonable agreement at
leading order in spite of our much more numeric-intensive calculation. We
also present the NLO and NNLO computations that are reassuringly close.
Perturbation theory seems to be working. The additional three calculations
on the right are performed in the PS (potential subtraction) scheme, where
V (q)→ θ(q−Λ)V (q) is IR-truncated. Here, there is a larger sensitivity. The
pull-down bars correspond to the variational error (whose sign is known).
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Fig. 3. Several pNRQCD predictions for the Ωccc 3/2+ mass. The result is similar
to other approaches [10, 11], etc.

There are no physical free parameters because we have worked out first
several meson observables, so we are providing a pure prediction.

3. Error budget and treatment of the IR

We estimated several sources of uncertainty in our computation, yielding
a precision level of 200–250 MeV. The first is the variational approxima-
tion (a two-parameter wavefunction ansatz overestimates binding energies
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in atomic physics by 25%, or about 40 MeV in our ccc system). Also under
control are the input parameters αs and mc, mb fit to meson observables
and that contribute an additional 50 MeV to the error budget. We find that
changing the NLO by the NNLO potentials amounts to some 100 MeV.

And the largest effect, of the order of 200 MeV, is the treatment of the
potential in the infrared. This happens because the corresponding NLO or
NNLO αs(Q

2) grow rapidly towards the IR in perturbation theory, and the
numeric diagonalization integrates over all momenta Q (analytic approaches
to the meson problem do not face the infrared since the wavefunction is eval-
uated at scales mαs). One possibility is to freeze αs in agreement with ana-
lytic perturbation theory or DSE’s, to stay in a “frozen”-pole mass scheme.
This includes part of the IR physics but freezing is similar to a propagator
resummation, and this breaks the philosophy of perturbation theory.

Another, more drastic possibility, is to adopt the PS scheme (acknowl-
edging that perturbation theory should not see infrared scales at all) and
truncate the potential (ergo, αs) at some intermediate scale between, say,
600 MeV–1 GeV. Both possibilities have been shown in figure 3.

Our predictions for the QQQ baryon masses (in GeV) are not particu-
larly precise, MΩccc = 4.9(0.25), and MΩbcc = 8.15(0.3), MΩbbc = 11.4(0.3),
MΩbbb = 14.7(0.3), but quite some improvement in the errors is possible.

4. Outlook and further work

Some of our current research focuses on assessing whether the sensitivity
to the infrared cutoff [12] can be ameliorated by employing a renormalization-
group equation [13]. Our result for the Bc meson in figure 4 is promising.
Future work should also somehow address the effect of light-quark degrees
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Fig. 4. The Bc-meson mass as a function of the infrared cutoff where the perturba-
tive potential is set to zero. The simultaneous rescaling of the quark masses cancels
the sensitivity to the regulating procedure and yields a stable mass prediction.
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of freedom, that is not germane to pNRQCD. One can guess easily an error
of the order of 50 MeV due to pion-cloud effects. Such “unquenching” of
pNRQCD requires coupling its quasi-static sources to chiral perturbation
theory and doing so should prove rewarding1. The generalization to many-
body systems with a larger number of heavy quarks, for example QQQ̄Q̄
tetraquarks or molecules that can populate the 7 GeV region (for charmed
quarks) up to the 18 GeV region (for bottom quarks) should follow similar
lines, once the relevant static Wilson potentials become available.
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