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Zero temperature properties of an (axial-) vector meson extended linear
σ-model are discussed, concerning the possible different realizations of the
axial anomaly term. The different anomaly terms are compared with each
other on the basis of a χ2 minimalization process. It is found that there
is no essential difference among the different realizations. This means that
any of them can be equally used from phenomenological point of view.
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1. Introduction

According to our knowledge, the commonly believed fundamental theory
of strong interaction is Quantum Chromodynamics (QCD), which is up to
now proved to be unsolvable in the low energy regime, where the basic de-
grees of freedom are the observable mesons and hadrons. Since the original
degrees of freedom in QCD are quarks and gluons and the construction of
mesons and hadrons is unknown, in this regime, one possibility is to build
up some effective theory [1], which reflects some of the original properties of
QCD. One of the most important such property is the approximate global
U(3)L×U(3)R symmetry (if we consider three flavors), the chiral symmetry.
This symmetry is isomorphic to the U(1)V × SU(3)V × U(1)A × SU(3)A,
which is broken down — explicitly due to non-zero quark masses, and spon-
taneously due to non-zero quark condensates [2] — to U(1)V × SU(3)V , if
the isospin symmetric case is considered.
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Since if only the chiral symmetry is considered alone, the Lagrangian can
still contain infinitely many terms, it is necessary to impose other restric-
tions as well. One natural choice is renormalizability, however, in an effective
model this is not totally necessary. Moreover, since we would also like to
include (axial-) vector mesons, the renormalizability is violated anyway. In-
stead of renormalizability, we have chosen dilaton symmetry to restrict the
number of terms (for more details, see [3] and references therein).

In order to maintain the above mentioned symmetry breaking pattern
(U(1)V ×SU(3)V ×U(1)A×SU(3)A −→ U(1)V ×SU(3)V ), besides the chiral
and dilaton symmetric terms, symmetry breaking terms are also needed in
the effective Lagrangian. The symmetry is broken explicitly and sponta-
neously, and concerning the U(1)A violation, the spontaneous breaking is
realized through the so-called axial/chiral anomaly [4]. Because of this, an
anomaly term should be introduced into the effective Lagrangian, which can
have different forms, as will be discussed shortly.

The specific form of the anomaly term will affect the form of the tree level
masses of the pseudoscalar meson sector. Thus, through a χ2 minimalization
process, which maintains a comparison between the model predictions and
the physical spectrum, the ‘goodness’ of the different anomaly terms can be
investigated.

The paper is organized as follows. In Sec. 2 we briefly discuss the model,
which is described in more detail in our previous works [3, 5, 6]. In Sec. 3 we
investigate the different anomaly terms and describe the χ2 minimalization
process, while in Sec. 4 we conclude.

2. The model

For the Lagrangian, we use, apart from a modified anomaly term LU(1)A ,
the same as in [3], where we have neglected the dilaton field, since it is irrel-
evant in the current investigation. Thus, our Lagrangian takes the following
form
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µ) Tr(LνL

ν) + Tr(RµR
µ) Tr(RνR

ν)] , (2.1)

where

DµΦ ≡ ∂µΦ− ig1(LµΦ− ΦRµ)− ieAµ[T3, Φ] ,
Lµν ≡ ∂µLν − ieAµ[T3, Lν ]− {∂νLµ − ieAν [T3, Lµ]} ,
Rµν ≡ ∂µRν − ieAµ[T3, Rν ]− {∂νRµ − ieAν [T3, Rµ]} .

The quantities Φ, Rµ, and Lµ represent the scalar and vector nonets:

Φ =
8∑
i=0

(Si+ iPi)Ti , Lµ =
8∑
i=0

(V µ
i +Aµi )Ti , Rµ =

8∑
i=0

(V µ
i −A

µ
i )Ti ,

(2.2)
where Ti (i = 0, . . . , 8) denote the generators of U(3), while Si represents the
scalar, Pi the pseudoscalar, V

µ
i the vector, Aµi the axial-vector meson fields,

and Aµ is the electromagnetic field.
It is worth to note that in the (0–8) sector there is a particle mixing

(see [3]) and we use the ϕN = 1√
3
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,
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i ) non-strange–strange basis, which is more suitable for

our calculations. Moreover, H and ∆ are constant external fields defined
as H = H0T0 +H8T8 = diag
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2
)
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Finally, for the LU(1)A anomaly term we use three different terms

LU(1)A = c1

(
detΦ+ detΦ†

)
+ c2

(
detΦ− detΦ†

)2
+cm

(
detΦ+ detΦ†

)
Tr
(
ΦΦ†

)
(2.3)

which should be understood in a sense that from the c1, c2, cm parameters
only one is different from zero at the same time. The first two terms are
approximations of the “original” axial anomaly term, which is ∝ (ln detΦ−
ln detΦ†) (see the original term e.g. in [7] and the approximation in [8]),
while the third term is a mixed term. Our concept was to choose different
anomaly terms in which the power of the Φ field is no more than six. This
can be regarded as a first approximation used to compare the effects of
different anomaly terms on the spectrum.
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3. Comparison of the different anomaly terms

For the analysis, we used a χ2 method (for more details, see [3]) in
which we calculated some physical quantities — masses and decay widths
— at tree-level, and compared to experimental data taken from the PDG [9].
χ2 is defined as

χ2(x1, . . . , xN ) =

M∑
i=1

[
Qi(x1, . . . , xN )−Qexp

i

δQi

]2
, (3.1)

where (x1, . . . , xN ) = (m0, λ1, λ2, . . . ) are the unknown parameters of the
model, Qi(x1, . . . , xN ) are the calculated physical quantities, whileQexp

i ±δQi
are the experimental values taken from the PDG. In the process, we mini-
malize the χ2 and determine the 11 unknown parameters of the model, which
are C1(≡ m2

0 + λ1
(
φ2N + φ2S

)
), C2(≡ m2

1 +
h1
2

(
φ2N + φ2S

)
), δS, g1, g2, φN, φS,

h2, h3, λ2 and one from c1, c2, cm. The determined parameters belonging to
the minimal χ2 give the best description of the experimental data. For the
physical quantities, we have chosen the following 21 observables [3], fπ, fK ,
mπ, mK , mη, mη′ , mρ , mK? , mωS≡ϕ(1020), mf1S≡f1(1420), ma1 , ma0≡a0(1450),
mK?

0≡K?
0 (1430)

, Γρ→ππ, ΓK?→Kπ, Γφ→KK , Γa1→ρπ, Γa1→πγ , Γf1(1420)→K?K ,
Γa0(1450), ΓK?

0 (1430)→Kπ
1.

In Table I, we summarized the χ2 and the reduced χ2
red values for the

different cases. In the last row, call means that we included all the three
anomaly terms in the fit. It can be seen that the c1 and c2 terms give
basically the same description of the experimental data, while the cm term
is not as good as the first two. Even if we include all the three terms and
extend the number of free parameters, we cannot get any closer to describe
better the experimental data. We can, therefore, conclude that in the linear

TABLE I

The total χ2 and the reduced χ2
red = χ2/Ndof for the different anomaly terms,

where Ndof is the difference between the number of experimental quantities and
the number of fit parameters (10 for the first three row and 8 for the last).

Term χ2 χ2
red

c1 59.38 5.94
c2 62.40 6.24
cm 110.93 11.09
call 50.19 6.27

1 It is worth to note that according to the different anomaly terms, the functional forms
of some of the observables are different that in [3].
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sigma model one can use either the c1 or the c2 type of term for the anomaly,
while the use of some mixed term is not favored. A detailed analysis shows
that either the c1 or c2 term is in good agreement with the experimental
data.

4. Conclusion

We presented an (axial-) vector meson extended linear sigma model with
different axial anomaly terms. Global χ2 fits were performed in order to com-
pare the different anomaly terms. All the model parameters were fixed in this
χ2 minimalization process. For the different anomaly terms, we found that
two of them — which are emanating from the originally suggested anomaly
term — describe basically the same physics and are in good agreement with
the experimental data, while the third one, the mixed term, is not as good
as the others.

We should point out, however, that the presented investigation is only
a small part of the meson phenomenology, which aims to understand better
the mechanisms of strong interaction at low energies.
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