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The Schwinger–Dyson Bethe–Salpeter approach to the bound state
problem is applied to the spin zero glueball spectrum. Quark and ghost
propagators are obtained from the lattice gluonic two-point function and
used as an input to the glueball bound state problem. Although reason-
ably good results are obtained for all quantities, inconsistencies in the gauge
couplings point to a moderate truncation sensitivity.
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1. Introduction

The Bethe–Salpeter (BS) formalism is a field-theoretic method for ob-
taining information on bound state systems in a covariant framework. It is,
however, technically challenging to implement and most applications to
hadronic physics have been made in simple models or in two-body sys-
tems [1]. Because the Bethe–Salpeter formalism is covariant, it is especially
useful for describing dynamical quantities such as form factors and distribu-
tion functions. It is also a many-body approach and thus can incorporate
chiral symmetry breaking, which is crucial to obtaining reliable predictions
in the light hadron spectrum.

Unfortunately, these benefits come at a cost. The Bethe–Salpeter for-
malism hinges on the assumed form of a two-body irreducible scattering
kernel, and this form must be obtained with some truncation that must be
made with no apparent small parameter in sight. This issue can become
acute because truncated kernels often lead to bizarre predictions such as
‘ghost states’ [1], nonsensical spectra, or unphysical parameter-dependence
of observables. Even this undesirable situation can be a distant goal. Often
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one simply postulates a kernel and tests the accuracy of its predictions. Of
course, this removes all putative connections to Quantum Chromodynamics
(QCD) and the Bethe–Salpeter formalism devolves to a (quite sophisticated)
quark model.

The extension of the Bethe–Salpeter approach to the gluonic sector of the
strong interactions is described here [2]. To our knowledge, this is the first
attempt at computing glueball masses with the Bethe–Salpeter formalism. It
is also a rare example of a hadronic computation that uses QCD to build the
interaction kernel. The ingredients necessary for this investigation are gluon,
ghost, and quark propagators and the three-gluon, four-gluon, quark-gluon,
and ghost-gluon vertices. The ghost and quark propagators are obtained by
solving the relevant Schwinger–Dyson equations with a model gluon prop-
agator that is taken from lattice Landau gauge computations. Vertices are
modeled with Ansatze that incorporate constraints from gauge invariance
and multiplicative renormalisability. All ingredients are then combined with
an assumed interaction kernel to obtain the scalar glueball spectrum.

2. Propagators and vertices

Quark, gluon, and ghost propagators are defined in terms of dressing
functions as:

S(k) ≡ i

A/k −B
, (1)

Dµν(k) ≡ −i
(
gµν −

kµkν
k2

)
G(k)− iξ

kµkν

k4 + iε
, (2)

Hab(k) ≡ iδabH(k) ≡ iδab
h(k)

k2
. (3)

The exact quark and ghost gap equations are shown in Fig. 1. As dis-
cussed above, these are truncated by employing vertex models.
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Fig. 1. Quark and ghost gap equations.

The primary ingredient in this investigation is the gluon dressing func-
tion, G. The unrenormalised propagator has been computed in the Landau
gauge in pure SU(3) gauge theory on large lattices [3], with results shown
in Fig. 2.
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Fig. 2. Lattice results [3] for the Landau gauge gluon propagator and model fits.
Error bars are smaller than the points.

Solving the ghost gap equation yields the results shown in Fig. 3, where
it is seen that the agreement with a similar lattice computation is quite
good. We note that the gap equation has been renormalised and that the
gauge coupling has been adjusted to provide a good fit to the lattice results.
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Fig. 3. The renormalised ghost dressing function and lattice results [3]. Error bars
are smaller than the data points. Dashed line: bare vertex model; dotted line: full
vertex model.

The quark dressing functions are compared to lattice data in Fig. 4;
again, the agreement is quite good except for a 20% discrepancy in the
wavefunction normalisation in the infrared.
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Fig. 4. The quark wavefunction renormalisation, Z = 1/A, and quark running mass
M = B/A, along with lattice results [4].

3. Glueball Bethe–Salpeter equation and results

The form of the gluonic Bethe–Salpeter amplitude is constrained by par-
ity and transversality. The negative parity amplitude contains one scalar
function and is given by

χµν(k+, k−) = εµναβkαPβF (k, P ) . (4)

Alternatively, the scalar glueball is described by two scalar amplitudes as
follows

χµν(k+, k−) = A(k, P )Aµν +B(k, P )Bµν . (5)

Here,

Aµν ≡
k⊥+µ k⊥−ν
k⊥+ · k⊥−

, Bµν ≡ gµν −
k−µ k

+
ν

k+ · k−
, (6)

and

k⊥+µ = k+µ − k−µ
(k+)2

k+ · k−
, k⊥−µ = k−µ − k+µ

(k−)2

k+ · k−
. (7)

The Bethe–Salpeter equation is represented in terms of coupled gluon
and ghost BS amplitudes as illustrated in Figs. 5 and 6. Coupling to quarks
has been neglected to facilitate comparison to quenched lattice gauge theory
computations of the glueball spectrum.

The equation for the pseudoscalar amplitude simplifies because the cou-
pling to the ghost channel is zero and because the contact diagram van-
ishes. Alternatively, the coupled three-channel problem must be solved for
the scalar glueball. The numerical task is made cumbersome because of
the O(102) terms that contribute to the kernels. The ground state and ex-
cited state masses are shown in Fig. 7, along with quenched lattice results
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Fig. 5. Gluonic Bethe–Salpeter equation. Dots represent full propagators and
model vertices. Crossed diagrams are not shown.

+=

Fig. 6. Ghost Bethe–Salpeter equation.

from Ref. [5]. The figure shows the Bethe–Salpeter eigenvalue, which obtains
unity at the Minkowski momentum that corresponds to the relevant state’s
mass. These results are obtained by fitting the gauge coupling to reproduce
the ground state scalar mass. The other three masses are predictions. One
sees that the excited scalar and ground state pseudoscalar are reasonably ac-
curately reproduced, while the excited state pseudoscalar (right most dotted
line) is approximately 500 MeV too light.
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Fig. 7. Glueball Bethe–Salpeter eigenvalues. Lattice data [5] are represented by
the horizontal bars. Solid lines: ground states; dotted lines: first excited states.
µ = 1 GeV, g(µ) = 0.41.
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4. Conclusions

While a reasonably good description of the glueball masses and ghost and
quark dressing functions was obtained, the couplings required to obtain such
descriptions were drastically different. In particular, g(µ = 1 GeV) = 4.8
for the quark propagator, g(µ = 1) = 2.4 for the ghost propagator, and
g(µ = 1) = 0.41 for the glueball spectrum (µ is the renormalisation scale).
It thus appears that a consistent description of simple properties of QCD
remains to be achieved. In particular, the effective strength of the gluonic
interaction in the model glueball kernel is much too large. Presumably the
problems arise due to inadequate truncations of the Schwinger–Dyson and
Bethe–Salpeter equations. Finding alternate truncation schemes that can
provide robust approximations to low energy QCD is clearly an important
goal.

This research was supported by the U.S. Department of Energy under
contract DE-FG02-00ER41135.
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