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The strength of the kaon—antikaon interaction is a crucial quantity for
many physics topics. It is, for example, an important parameter in the
discussion on the nature of the scalar resonances a¢(980) and f(980), in
particular, for their interpretation as K K molecules. So far, one of the few
possibilities to study this interaction is the kaon pair production in multi-
particle exit channels such as pp — ppK+K~. In this article, we present the
latest results of the K+ K~ interaction preformed based on near threshold
data gathered at the Cooler Synchrotron COSY. We discuss also shortly
perspectives for a new measurement of the kaon—antikaon scattering length
in the eTe™ collisions.
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1. Introduction

The motivation for investigating the low energy K+K ™~ interaction is
closely connected with understanding of the nature of scalar resonances
f0(980) and ap(980). Besides the interpretation as gg mesons [1], these par-
ticles were also proposed to be qqqq tetraquark states |2], hybrid ¢g/meson—
meson systems [3] or even quark-less gluonic hadrons [4]. Since both f(980)
and ao(980) masses are very close to the sum of the K+ and K~ masses,
they are considered also as K K bound states [5, 6]. The strength of the K K
interaction is a crucial quantity regarding the formation of such molecules.

The KTK~ interaction was studied experimentally inter alia in the
pp — ppKTK™ reaction with COSY-11 and ANKE detectors operating
at the COSY synchrotron in Jiilich in Germany. The experimental data col-
lected systematically below [7-9] and above [10-12] the ¢ meson threshold
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revealed a significant enhancement in the shape of the excitation function
near the kinematical threshold. On the other hand, despite the search done
by the COSY-11 experiment [8, 13] and analysis based on big data sam-
ples collected by ANKE and WASA-at-COSY experiments, there is no clear
evidence of the K™K~ pairs production through the fo(980) or a(980) reso-
nances. The enhancement of the excitation function near the threshold may
be due to the final state interaction (FSI) in the ppK ™K~ system. Indeed,
the differential spectra obtained by the COSY-11 [9, 14] and ANKE [10]
groups indicate a strong interaction in the p K~ and ppK ~ subsystems. The
phenomenological model proposed by the ANKE Collaboration based on
the factorization of the final state interaction into interactions in the pp
and pK~ subsystems allowed to describe the experimental p K~ and ppK~
invariant mass distributions assuming an effective pK~ scattering length
a,x- = 1.5¢ fm [10, 14]. However, the data very close to the kinematical
threshold remain underestimated, which indicates that in the low energy
region the influence of the K™K~ final state interaction may be signifi-
cant [10, 14, 15]. Motivated by this observation, the COSY-11 Collaboration
has estimated the scattering length of the K™K~ interaction based for the
first time on the low energy pp — ppK ™K~ Goldhaber plot distributions
measured at excess energies of @ = 10 MeV and 28 MeV [14].

In this article, we present preliminary results of the K™K ~-FSI studies
combining the Goldhaber plot distributions established by the COSY-11
group with the experimental excitation function near threshold.

2. Parametrization of the interaction in the ppK+t K~ system

The final state interaction model used in the presented analysis is based
on the factorization ansatz mentioned before, with an additional term de-
scribing the interaction of the KK~ pair (the pK ™ interaction was ne-
glected since it was found to be weak [10]). We have assumed that the
overall enhancement factor originating from final state interaction can be
factorized into enhancements in the proton—proton, the two pK~ and the
K™K~ subsystems

Frs1 = Fpp(k1) X Fy g (k2) X F, k- (k3) X Frer g (ka) (1)

where k; stands for the relative momentum of particles in the corresponding
subsystem. The proton—proton scattering amplitude was taken into account
using the following parametrization

eiorr('S0) gin Spp(1S0)
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where C' stands for the square root of the Coulomb penetration factor [16].
The parameter &,,('Sp) denotes the phase shift calculated according to the
modified Cini—Fubini-Stanghellini formula with the Wong—Noyes Coulomb
correction [17-19]. Factors describing the enhancement originating from the
pK~ and KT K~ —FSI were instead parametrized using the scattering length
approximation

1 1

F, Frev k-

2 1-— ikapKf ’

2)

1 iky g+ -

where ag+ - is the scattering length of the K+ K~ interaction treated as a
free parameter in the analysis. Since the p/K ~ scattering length estimated by
the ANKE group should be rather treated as an effective parameter [10], in
the analysis we have used more realistic a, - value estimated independently
as a mean of all values summarized in Refs. [20, 21]: a,x- = (—0.65 +
0.78¢) fm.

It has to be stressed, that within this simple model we neglect the charge-
exchange interaction allowing for the K°K? = K K~ transitions, and gen-
erating a significant cusp effect in the K™K~ invariant mass spectrum near
the K°K? threshold [22]. However, the ANKE data can be described well
without introducing the cusp effect [22], thus we neglect it in this analysis.
We also cannot distinguish between the isospin I = 0 and I = 1 states of
the K*K~ system. However, as pointed out in Ref. [22], the production
with I = 0 is dominant in the pp — ppK ™K~ reaction independent of the
exact values of the scattering lengths.

3. Fit to the experimental data

In order to estimate the strength of the K™K~ interaction the experi-
mental Goldhaber plots, determined at excess energies of () = 10 MeV and
Q = 28 MeV [14], were compared together with the total cross sections to
the results of the Monte Carlo simulations treating the KK~ scattering
length ap+ - as an unknown parameter. We have constructed the following
x? statistics

exp m)Q

8
2
X (ag+ -, ) Z (Ao exp)

=1

2
N5,

+QZZ BiNj, — Nij + fkln<ﬁ,]<,s>]a (3)
j= I 5k

where the first term was defined following the Neyman’s x? statistics, and
accounts for the excitation function near threshold for the pp — ppK+TK~
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reaction. JZ-eXp denotes the i experimental total cross section measured
with uncertainty Ao} and o stands for the calculated total cross section
normalized with a factor o treated as an additional parameter of the fit. "
was calculated for each excess energy (Q as a phase space integral over five
independent invariant masses [23]. The second term of Eq. (3) corresponds to
the Poisson likelihood x? [24] describing goodness of the fit to the Goldhaber
plots determined at excess energies @@ = 10 MeV (5 = 1) and @ = 28 MeV
(j = 2) using COSY-11 data [14]. N7 denotes the number of events in

the k™ bin of the j* experimental Goldhaber plot, and N * stands for the
content of the same bin in the simulated distributions. The simulations
were normalized with a factor defined for the j™ excess energy as: Bj =
Ljao?"/N. ]gen' Here, L; stands for the total luminosity [9] and N ]gen denotes

the total number of simulated pp — ppKTK~ events. The x? distribution
obtained after subtraction of its minimum value is presented in Fig. 1 as a
function of the real and imaginary part of the K K~ scattering length. The
best fit to the experimental data corresponds to

_ +1.15¢at _ +0.6stat +0-9sys
[Re (ag+x-)| =0.0 Tt fm,  Im(ag+x-) =11 Zgs0 Zgn fm

(4)
with x?/ndof = 1.87. The statistical uncertainties were determined at the
70% C.L., taking into account that the number of fit parameters is equal to
three [25]. Systematic errors due to the uncertainties in the assumed pK~—
scattering length were instead estimated as a maximal difference between the
obtained result and the K™K~ scattering length determined using different
a,k- values quoted in Refs. [20, 21]. In the case of the |Re(ax+x-)|, the
differences were negligible. The final state interaction enhancement factor
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Fig. 1. x?-x2,;, distribution as a function of |Re(ag+x-)| and Im(ag+x-) (left).
In the middle and right plots x?2;, denotes the minimum of y? with respect to
|[Re(ag+x-)| and Im(ag+x-), respectively. In the figure on the left, the area of
the squares is proportional to the x2—x2; value.



Study of the KT K~ Final State Interaction in Proton—Proton and . .. 869

| Fre+ i~ |? in the scattering length approximation is symmetrical with respect
to the sign of Re(ag+ - ), therefore, we have determined only its absolute
value. The result of the analysis with inclusion of the interaction in the
K™K~ system described in this article is shown as the solid curve in Fig. 2.
One can see that it describes the experimental data over the whole energy
range quite well.
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Fig.2. Excitation function for the pp — ppK ™K~ reaction. The triangle and
circles represent the DISTO and ANKE measurements, respectively [10, 12]. The
squares are results of the COSY-11 [7, 8, 14] measurements. The dash-dotted,
dashed and solid curves represent the energy dependence obtained assuming that
there is no interaction between particles, assuming the pp and pK~—FSI and taking
into account pp, pK and KK~ interaction, respectively. The dashed and dash-
dotted curves are normalized to the DISTO data point at Q = 114 MeV.

4. Summary and outlook

A combined analysis of both total and differential cross section distribu-
tions for the pp — ppK ™K~ reaction in the framework of a simple factoriza-
tion ansatz allowed to estimate the K+ K~ scattering length by a factor five
more precise than the previous one [14]. However, the determined ap+ p—
value is still consistent with zero, which indicates that in the pp K™K~ sys-
tem the interaction between protons and the K~ meson is dominant. All
studies of the pp — ppK ™K~ reaction suggest also that the resonant KK~
pair production near threshold proceeds rather through the A(1405) reso-
nance than through scalar ao(980)/ fo(980) mesons [10].
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Therefore, precise determination of the K™K~ scattering length requires
less complicated final states like KK ~, where only kaons interact strongly.
This final state can be studied, for example, via the eTe™ — K™K~ re-
actions with the KLOE-2 detector operating at the DA®NE ¢-factory [26].
Analysis of the invariant mass distributions obtained in this reaction would
allow detailed studies of the K™K ~—FSI, including the contribution from
the production through scalar resonances. Thus, it would be a continuation
of the ap(980) and fy(980) studies done so far by the KLOE Collabora-
tion [27-30].
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