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Two-point correlators represented by either perturbative or non-per-
turbative integral equations in Euclidean space are considered. In general,
it is difficult to determine the analytic structure of arbitrary correlators
analytically. When relying on numerical methods to evaluate the analytic
structure, exact predictions of, e.g., branch point locations (i.e., the multi-
particle threshold) provide a useful check. These branch point locations can
be derived by Cutkosky’s cut rules. However, originally they were derived
in Minkowski space for propagators with real masses and are thus not
directly applicable in Euclidean space and for propagators of a more general
form. Following similar considerations that led Karplus et al., Landau and
Cutkosky more than 50 years ago to the mass summation formula that
became known as Cutkosky’s cut rules, we show how the position of branch
points can be derived analytically in Euclidean space from propagators of
very general form.
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1. Introduction and motivation

More than 50 years ago, several studies on the analytic structure of
Feynman amplitudes were published [1–3] that shed light on the occurrence
of the spectral threshold. Here, we apply this long-known technique to two-
point functions at one-loop order in Euclidean space. Thereby very general
analytic structures of the loop integrands are permitted which allows to
employ a large class of propagators known in closed form for perturbative
calculations, as well as to extend this to non-perturbative equations which
need to be solved self-consistently. In principle, this is straightforward, but
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as we applied this technique to various problems in recent studies [4–6] and
are using it in an ongoing non-perturbative study of the quark propagator,
we will provide details of the technique here. The applicability of Cutkosky’s
cut rules in Euclidean space is discussed also in [7] using the inverse Stieltjes
transformation. The arguments presented here, on the other hand, are based
directly on the loop integral and the analytic structure of the integrand.

To start with, consider a two-point function which is expressed in Eu-
clidean momentum space at one-loop order. In the perturbative case, such
a two-point function might be written as

M (p) = 〈O(p)O(−p)〉d=4 =

∫
d4q

(2π)4
f(p, q, cos θ)

g(p, q, cos θ)
, (1)

where d = 4 denotes the (Euclidean) dimension, q is some loop momentum
and θ the angle enclosed by the momenta p and q. The non-perturbative case
will be addressed in Section 3. For convenience, the integrand is expressed
as a fraction of two functions f and g, which provides access to the poles
of the integrand via the zeros of g(p, q, cos θ), assuming that the zeros of
g lead to integrable singularities. Note that, in general, such integrals are
divergent and need to be renormalized, e.g., via BPHZ. In the following, we
assume that Eq. (1) is a renormalized expression.

In Euclidean space, the momentum-space integral (1) might be written
in d-dimensional hyper-spherical coordinates (here we consider d = 4, a gen-
eralization to arbitrary d is straightforward). Regardless of the dimension d,
the number of integrals in equation (1) reduces from d to 2. We thus inte-
grate over the square of the inner momentum y = q2 and z = cos θ. The
expression reduces to

M (x) =

ξ2∫
0

dyy

1∫
−1

dz
√

1− z2 f̃(x, y, z)
g(x, y, z)

, (2)

with x = p2 and ξ2 the UV cutoff. Note that the factor of (2π)4, as well
as the constant contributions of the trivial integrals, have been absorbed
into the function f̃ . When x ∈ C instead of x ∈ R+

0 , a thorough analysis
of the analytic structure in the y-complex plane allows for the prediction
of non-analyticities of the result. The latter will be identified with branch
points.

When x is not on the positive real axis, the integration in y is no longer
straightforward and it becomes necessary to deform the integration contour.
As long as it is possible to integrate from 0 to ξ2 without hitting any ob-
structions like branch cuts, the result is analytic. Non-analyticities in x
arise, when this is prohibited by obstructions in the y-plane. These can be
poles but also branch cuts induced by the angle integration.
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The latter arise when integrating over the (integrable) singularities of
the angle integral. How this comes about can be illustrated in a very simple
example. Consider the following integral for complex values of y, where
a, b ∈ R,

f(y) =

b∫
a

dz
1

y + z
= log z

∣∣∣∣y+b
y+a

= log

(
y + b

y + a

)
. (3)

With the particular (but arbitrary) choice of a = −1, b = +1, we find that
a branch cut arises for y ∈ [−1, 1], see Fig. 1. This branch cut is present
because z picks up the singular values of the integrand. This situation is, of

Fig. 1. Branch cut for complex values of y as obtained from equation (3).

course, much simpler than for physical examples, but it already features a
branch cut which is induced by the z-integral and shows up in the complex
y-plane. Furthermore, we learn that we do not have to perform the angular
integral in order to predict the branch cut structure in the y-plane. It is
sufficient to find all complex values of y for which the integrand becomes
singular. Thus, in view of equation (2), the parametrization of the branch
cut in the complex y-plane for given x ∈ C reads

c(x) = y0(x, z)

∣∣∣∣z=+1

z=−1
, (4)

where y0(x, z) are the zeros of the denominator for given complex x, para-
metrized by z, i.e., y0 is a solution w.r.t. y of

g(x, y, z) = 0 , x ∈ C , x const. , z ∈ [−1, 1] . (5)

Solving equation (5) yields all branch cuts in a parametrized form as given
in (4), as well as all purely y-dependent non-analyticities. In general, there
are both, poles and cuts. Non-analyticities in x arise when the restrictions
imposed on the contour of y do not allow a proper deformation of the con-
tour. These are the points we are after. To identify them, we need to find the
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values of x, where such a contour deformation is not possible. This happens
when an endpoint of a branch cut coincides with a pole and/or an endpoint
of the solely y-dependent non-analyticities of the integrand. From this, one
can also see how the discontinuity at the branch cut develops: Depending
on which side of the branch point a point x lies, the integration contour has
necessarily a different shape and the value of the integral is not continuous
across the branch cut; see Fig. 2 for an example.

Fig. 2. The analytic structure in the y-plane for m1 = 0.5 and m2 = 1. Slightly
above/below the predicted branchpoint of x0 = −(m1 +m2)

2 = −2.25 the contour
can still be drawn, while for x = x0 there is no continuous deformation possible.

We can summarize the procedure to identify the branch points as follows:

— Step 1: Find all non-analyticities of the y-integrand. ⇒ Cuts and
poles in the y-plane.

— Step 2: Find the points xc where the endpoints of the induced cuts
coincide with other non-analyticities in the y-plane which depend only
on y ⇒ Candidates for branch points.

— Step 3: Check if the y-contour can be deformed properly for any xc
from Step 2. If not, xc is a branch point xb.

2. Correlator with real masses

To confirm the results from the mass-summation formula of [1–3], let us
consider a generic correlator with two masses m1 ∈ R+ and m2 ∈ R+,

M (p) = 〈O(p)O(−p)〉d=4 =

∫
d4q

(2π)4
f(q, p− q)(

(p− q)2 +m2
1

) (
q2 +m2

2

) , (6)

where f(q, p − q) is a function constructed out of the Lorentz invariants.
Switching to hyper-spherical coordinates, we have

M (x) =

∞∫
0

dyy

1∫
−1

dz
√

1− z2 f̃(x, y, z)(
x+ y − 2

√
x
√
yz +m2

1

) (
y +m2

2

) , (7)
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with the usual identifications x = p2, y = q2 and z = cos θ. All constants
have been absorbed into f̃(x, y, z). According to the procedure outlined
above, we need to determine the zeros of the denominator to get parametriza-
tions for the cuts (Step 1). In this case, the solution can be easily worked
out analytically and yields

y1 = −m2
2 ,

y2(x, z) = −m2
1 − x+ 2xz2 − 2

√
−m2

1xz
2 − x2z2 + x2z4 ,

y3(x, z) = −m2
1 − x+ 2xz2 + 2

√
−m2

1xz
2 − x2z2 + x2z4 . (8)

According to Step 2, we solve y2(x, z) = y1 and y3(x, z) = y1 for z = ±1
with respect to x. This yields the following branch point candidates

xc = −(m1 ±m2)
2 . (9)

The solution with the minus sign does not interfere with the integration
contour (see Fig. 2) so that we are left with

xb = −(m1 +m2)
2 . (10)

This agrees with the result of [1–3] if we use it for Euclidean momenta, i.e.,
if we plug in negative squares of the masses there,

x = −(m1 +m2)
2 =

(
i
√
m2

1 + i
√
m2

2

)2

=

(√
−m2

1 +
√
−m2

2

)2

. (11)

For an example with complex masses, see [5].

3. Fitted correlators and non-perturbative cases: An outlook

The procedure outlined in the section above proved to be useful in pertur-
bative studies where the analytic continuation was performed numerically.
The branch point location(s) obtained from this analysis served as a check
for the numerics. In [4], the case of complex conjugate masses was studied,
while in [5, 6] complex conjugate masses as well as a propagator featuring
a cut with a singular endpoint were considered. For the complex conjugate
poles, all three resulting branch points have been found by this procedure.
Note that one of them is time-like and thus corresponds to the physical
multi-particle threshold, while two are complex. Due to the existence of the
latter, no Källén–Lehmann representation is possible.
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The next step is a self-consistent determination of propagators and their
analytic structure in the non-perturbative regime of QCD, e.g., as input for
bound-state equations. Several studies of the non-perturbative properties of
Green functions using Dyson–Schwinger equations (DSEs) have been pub-
lished, see [8, 9] for recent examples. In an ongoing study, we are looking
into the analytic properties of the quark propagator DSE in the Landau
gauge. Since the structure of the r.h.s. of the equation depicted in Fig. 3
is an integral of a similar form as in Eq. (2), the same procedure can be
used. The additional complication of such a calculation is that the integral
depends on the quantity on the l.h.s. and the equation has to be solved
self-consistently.

Fig. 3. The quark propagator Dyson–Schwinger equation.
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