
Vol. 6 (2013) Acta Physica Polonica B Proceedings Supplement No 3

QUARKONIUM AND GLUEBALL ADMIXTURES
OF THE SCALAR–ISOSCALAR RESONANCES

f0(1370), f0(1500) AND f0(1710)
∗

Stanislaus Janowski

Institute for Theoretical Physics, Goethe-University
Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany

(Received July 10, 2013)

Using the U(3)R ×U(3)L extended Linear Sigma Model with the ordi-
nary (pseudo)scalar and (axial)vector mesons as well as a scalar glueball,
we study the vacuum phenomenology of the scalar–isoscalar resonances
f0(1370), f0(1500) and f0(1710). We present here a solution, based only on
the masses and not yet on decays, in which the resonances f0(1370) and
f0(1500) are predominantly nonstrange and strange q̄q states respectively,
and the resonance f0(1710) is predominantly a scalar glueball.
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1. Introduction

The experimental verification of many scalar–isoscalar resonances,
IG(JPC) = 0+(0++), up to the energy of 2 GeV [1] reenforced the idea that
the scalar glueball lies among them. However, the remaining open question
is which of these scalars–isoscalars is predominantly the glueball.

In this paper, we address this issue by studying the vacuum phenomenol-
ogy of scalar–isoscalar states within the framework of the so-called ex-
tended Linear Sigma Model (eLSM) [2–4]. Our numerical calculations of
the effective Lagrangian (1) are explicitly done in the case of three quark
flavours. For Nf = 3 two scalar–isoscalar q̄q states exist, the nonstrange
σN ≡

(
ūu+ d̄d

)
/
√

2 and the strange σS ≡ s̄s mesons. The scalar glue-
ball G ≡ gg is implemented in the eLSM from the very beginning as the
fluctuation of the dilaton field. We describe G as well as the generation of
the scale anomaly of the pure Yang–Mills Lagrangian at the quantum level
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by the usual logarithmic dilaton Lagrangian, first introduced in Refs. [5, 6].
Due to the same quantum numbers, a mixing between the scalar–isoscalar
quarkonia and glueball in our model takes place.

In this study, we focus on the determination of the mixing matrix by us-
ing the mass eigenvalues of the scalar–isoscalar states and identify them with
the physical masses of the resonances f0(1370), f0(1500) and f0(1710) [1].

The outline of this proceeding is as follows: In Sec. 2 we present the
Lagrangian of the extended Linear Sigma Model with a scalar glueball. In
Sec. 3 we discuss our results and finally in Sec. 4 we give a summary as well
as an outlook for further research.

2. The effective Lagrangian

In order to study the vacuum phenomenology of the scalar–isoscalar
resonances f0(1370), f0(1500) and f0(1710), we use the eLSM including a
scalar glueball [2–4]. Its compact representation for an optional number of
flavours is as follows:

L = Ldil + Tr

[
(DµΦ)†(DµΦ)−m2

0

(
G

G0

)2

Φ†Φ− λ2
(
Φ†Φ

)2]
−λ1

(
Tr
[
Φ†Φ

])2
+ c1

(
detΦ† − detΦ

)2
+ Tr

[
H
(
Φ† + Φ

)]
+Tr

[(
m2

1

2

(
G

G0

)2

+∆

)(
Lµ2 +Rµ2

)]

−1

4
Tr
[
Lµν2 +Rµν2

]
+
h1
2
Tr
[
Φ†Φ

]
Tr[LµLµ +RµR

µ]

+h2Tr
[
Φ†LµL

µΦ+ ΦRµR
µΦ†
]

+ 2h3Tr
[
ΦRµΦ

†Lµ
]

+ . . . , (1)

where
DµΦ = ∂µΦ− ig1(LµΦ− ΦRµ) (2)

and

Ldil =
1

2
(∂µG)2 − 1

4

m2
G

Λ2

(
G4 ln

∣∣∣∣GΛ
∣∣∣∣− G4

4

)
. (3)

The dilaton Lagrangian (3) describes the scale anomaly of the pure Yang–
Mills sector where the logarithmic term with the energy scale Λ breaks the
dilatation symmetry explicitly. The field G is the scalar dilaton and after
performing the shift G→ G0 +G, a particle with the mass mG arises which
we interpret as the scalar glueball.
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Our model underlies the following symmetries and their several break-
ings:

(i) The global chiral symmetry, U(Nf )R × U(Nf )L, which is broken ex-
plicitly due to the quantum effects and the nonvanishing quark masses
as well as spontaneously. As a consequence of breaking of the latter
one a nonvanishing quark condensate, 〈q̄q〉 6= 0, arises.

(ii) A crucial symmetry in our model is the already mentioned dilata-
tion symmetry or scale invariance, xµ → λ−1xµ, which is realized
at the classical level of the Yang–Mills sector of QCD, but explic-
itly broken by the loop corrections. This is known as scale or trace
anomaly, respectively, and leads to the nonvanishing gluon condensate,〈
αs
π G

a
µνG

a,µν
〉
6= 0. Taking into account the dilatation symmetry, we

can constrain the number of possible terms in our model. This implies
that in the chiral limit with the exception of the logarithmic term in
Eq. (3) and the term generating the U(1)A anomaly, all parameters en-
tering in the model are dimensionless. (Note, using the chiral anomaly
it was also possible to couple the pseudoscalar glueball to the model,
for details and results see Refs. [8]).

(iii) Our model is also in agreement with discrete symmetries of QCD, e.g.
parity P and charge conjugation C.

The multiplet of the ordinary scalar and pseudoscalar mesons in the case
of Nf = 3, containing the two out of three bare scalar–isoscalar states σN
and σS , reads [2]:

Φ =
1√
2


(σN+a00)+i(ηN+π0)√

2
a+0 + iπ+ K?+

0 + iK+

a−0 + iπ−
(σN−a00)+i(ηN−π0)√

2
K?0

0 + iK0

K?−
0 + iK− K̄?0

0 + iK̄0 σS + iηS

 . (4)

The explicit form of the left-handed and the right-handed (axial)vector
mesons multiplets, Lµ and Rµ can be found in Ref. [2].

3. Results and discussion

A reasonable approach to study the scalar–isoscalar sector of the eLSM
with a scalar glueball is to use the values of the global fit performed in Ref. [2]
and only to determine the additional three free parameters which enter in
this sector. Two of them arise directly from the dilaton Lagrangian (3),
namely the bare mass of the scalar glueball mG and the energy scale Λ. The
third one is λ1 which couples the ordinary (pseudo)scalar mesons and was
in Ref. [2] only determined as a part of combination.
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In order to obtain the numerical values of the corresponding parameters,
we use the bare masses of the scalar–isoscalar states and the experimental
masses of the resonances f0(1370), f0(1500) and f0(1710). Accordingly, we
consider the potential of the corresponding states in the matrix representa-
tion

V (σN , G, σS) =
1

2
(σN , G, σS)

 m2
σN

zGσN zσSσN
zGσN M2

G zGσS
zσSσN zGσS m2

σS

 σN
G
σS

 . (5)

The corresponding bare mass equations are

m2
σN

= C1 + 2λ1φ
2
N +

3

2
λ2φ

2
N , (6)

M2
G =

m2
0

G2
0

(
φ2N + φ2S

)
+
m2
G

Λ2

(
1 + 3 ln

∣∣∣∣G0

Λ

∣∣∣∣)G2
0 , (7)

m2
σS

= C1 + 2λ1φ
2
S + 3λ2φ

2
S . (8)

After diagonalization of the bare mass matrix (see Eq. (5)), we obtain the
matrix containing the physical masses of the scalar–isoscalar states, M ′ =
BMBT , where B is the mixing matrix which transforms the bare states into
the physical ones and vice versa f0(1370)

f0(1710)
f0(1500)

 = B

 σN ≡
(
ūu+ d̄d

)
/
√

2
G ≡ gg
σS ≡ s̄s

 . (9)

The numerical values of the free parameters are presented in Table I. They
have been obtained by requiring that the three following masses of the
scalar–isoscalar states [1] hold: Mf0(1370) = (1350 ± 150) MeV, Mf0(1500) =
(1505± 6) MeV and Mf0(1710) = (1720± 6) MeV.

TABLE I

Values of the free parameters.

Parameter Value

λ1 2.03
mG 1580 [MeV]
Λ 930 [MeV]

The numerical solution of the mixing matrix reads:

B =

 0.92 −0.39 0.05
−0.33 −0.83 −0.45
−0.22 −0.40 0.89

 . (10)
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It turns out that the resonances f0(1370) and f0(1500) are predominantly
nonstrange and strange q̄q states, and that the resonance f0(1710) is pre-
dominantly a scalar glueball. For other results of the mixing matrix B using
different theoretical models, we refer to Refs. [7] and references therein.
The solution in Eq. (10) relies only on calculations of masses of the scalar–
isoscalar states. In order to give final statements regarding the composition
of the f0 resonances, evaluation of the corresponding decays is essential.
Nevertheless, it is astonishing that by increasing the number of flavours in
our model, Nf = 2 → Nf = 3, the phenomenology of the f0 resonances
seems to change (see Ref. [3]).

4. Conclusions and outlook

We have evaluated the numerical values of the mixing matrix B by us-
ing the masses of the scalar–isoscalar states between 1 and 2 GeV within a
chiral model, the so-called extended Linear Sigma Model with a scalar glue-
ball [2, 3]. We have found that the resonances f0(1370) and f0(1500) are
predominantly nonstrange and strange q̄q states, and the resonance f0(1710)
is predominantly a scalar glueball.

Study in progress are calculations of the decay processes appropriate to
the solution presented in this work and further search for a solution with
the assignment where f0(1500) is predominantly a glueball and f0(1710)
predominantly a strange q̄q state [9].

The author thanks F. Giacosa, D. Parganlija and D.H. Rischke for co-
operation and useful discussions and acknowledges support from H-QM and
HGS-HIRe.
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