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DIFFERENTIATING BETWEEN ∆- AND Y-STRING
CONFINEMENT: CAN ONE SEE THE DIFFERENCE

IN BARYON SPECTRA?∗
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We use O(4) ' O(3)×O(3) algebraic methods to calculate the energy-
splitting pattern of the K = 2, 3 excited states of the Y-string in two
dimensions. To this purpose we use the dynamical O(2) symmetry of the
Y-string in the shape space of triangles and compare our results with known
results in three dimensions and find qualitative agreement.
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1. Introduction

QCD seems to demand a genuine three-quark confining potential: the
so-called Y-junction string three-quark potential, defined by

VY = σmin
x0

3∑
i=1

|xi − x0| , (1)

or, explicitly

Vstring = VY = σ
√

3
2

(
ρ2 + λ2 + 2|ρ× λ|

)
. (2)

The complete Y-string potential contains “additional” two-body terms that
are valid only in certain parts of the three-particle configuration space, and
which we shall ignore here. The |ρ × λ| term is proportional to the area
of the triangle subtended by the three quarks. The Y-string potential was
proposed as early as 1975, see Refs. [1, 2] and the first schematic calculation
(using perturbation theory) of the baryon spectrum for K ≤ 2 followed soon
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thereafter, Ref. [3]. References [4–6] elaborated on this. The first non-per-
turbative calculations (variational approximation) of the K = 3 band with
the Y-string potential were published in the early 1990s, Ref. [7] and ex-
tended to the K = 4 band later in that decade, Ref. [8]. Yet, some of the
most basic properties, such as the ordering of the low-lying states in the
spectrum of this potential, without the “QCD hyperfine interaction” and/or
relativistic kinematics, remain unknown.

The first systematic attempt to solve the Y-string spectrum, albeit only
for the K ≤ 2 states, can be found in Ref. [9]. That paper used the hyper-
spherical harmonics formalism, where the Y-string potential can be written
as a function of hyper-angles

VY = σ
√

3
2R

2 (1 + sin 2χ| sin θ|) . (3)

This led to the discovery, see Ref. [10], of a new dynamical O(2) symmetry
in the Y-string potential, with the permutation group S3 ⊂ O(2) as the
subgroup of the dynamical O(2) symmetry. That symmetry was further
elaborated in Ref. [11]. The present report is a continuation of that line of
work.

The three-body sum of two-body potentials has only the three-body
permutation group S3 as its symmetry. When one changes variables from the
hyper-angles (χ, θ) to z′ = z = cos 2χ (vertical axis), and x′ = x

√
1− z2 =

cos θ sin 2χ, one can see the full S3 symmetry, Fig. 1. The area of the triangle√
3
2 |ρ×λ| and the hyper-radius R are related to the Smith–Iwai variables α,
φ as follows

(cosα)2 =

(
2ρ× λ
R2

)2

, (4)

tanφ =

(
2ρ · λ
ρ2 − λ2

)
. (5)

The Y-string potential becomes

VY = σ
√

3
2R

2 (1 + | cosα|) . (6)

Independence of the potential on the variable φ is equivalent to its invari-
ance under (infinitesimal) “kinematic rotation” O(2) transformations δx′ =

2εz
′
, δz

′
= −2εx

′ or, in terms of the original Jacobi variables, δρ = ελ, δλ =
−ερ, in the six-dimensional hyper-space. This invariance leads to the new
integral of motion G3 = 1

2

(
pρ · λ− pλ · ρ

)
, References [10, 11], associated

with the dynamical symmetry (Lie) group O(2) that is a subgroup of the
(full hyper-spherical) O(6) Lie group.
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Fig. 1. Left: The equipotential contours for the central Y-string potential (solid),
and the boundary between the central Y-string and two-string potentials (dashes).
Right: The equipotential contour plot of the ∆-string potential as functions of
z

′
= z = cos 2χ (vertical axis), and x

′
= x
√

1− z2 = cos θ sin 2χ (horizontal axis).
The three straight lines (long dashes) of reflection symmetry correspond to the
three binary permutations, or “transpositions” S2 subgroups of S3. The rotations
through φ = ± 2π

3 correspond to two cyclic three-body permutations. The rotation
symmetry of the Y-string potential (left panel) about the axis pointing out of the
plane of the figure should be visible to the naked eye.

Of course, the sums of two-body potentials, such as the ∆-string po-
tential, are invariant only under finite rotations through φ = ±2π

3 , that
correspond to cyclic permutations, as well as under reflections about the
three symmetry axes. In that case, this generalized hyper-angular momen-
tum G3 is not an exact integral of motion, but an approximate one. The
precise consequences in the energy spectra of systems with such a broken
(approximate) symmetry will be shown below.

2. The O(4) algebraic method

The existence of an additional dynamical symmetry strongly suggests an
algebraic approach, such as those used in Refs. [12–15]. A careful perusal
of Refs. [12, 13] shows, however, that an O(2) group had been used as an
enveloping structure for the (discrete) permutation group S3 ⊂ O(2), but
was not interpreted as a (possible) dynamical symmetry. References [14, 15]
did not use this symmetry, however. For the sake of technical simplicity,
we confine ourselves to the two spatial dimensions here. In two dimensions
(2D), the non-relativistic three-body kinetic energy is a quadratic form of
the two Jacobi two-vector velocities, ρ̇, λ̇, so its “hyper-spherical symmetry”
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is O(4), and the residual dynamical symmetry of the Y-string potential is
O(2)⊗OL(2) ⊂ O(4), where OL(2) is the (orbital) angular momentum. As
the O(4) Lie group can be “factored” in two mutually commuting O(3) Lie
groups: O(4) ' O(3)⊗O(3), one may use for our purposes many of the O(3)
group results, such as the Clebsch–Gordan coefficients. The 3D case is more
complicated than the 2D one; for reasons of simplicity, we limit ourselves to
the two-dimensional case in this report.

We (re)formulate the problem in terms of O(4) symmetric variables and
then bring the potential into a form that can be (exactly) solved, i.e. we
expand it in O(4) hyperspherical harmonics YJJLM . The energy spectrum
is a function of the O(4) hyperspherical expansion coefficients for the po-
tential, and of the O(4) Clebsch–Gordan coefficients, that are products of
the ordinary O(3) Clebsch–Gordan coefficients. As the potential is OL(2)
rotation-symmetric, we have an additional constraint on the allowed hy-
perspherical harmonics and one finds that for values of K ≤ 3 one needs
only three terms: (1) the “hyper-spherical average”, i.e. the Y00

00 matrix el-
ement, (2) the area-term containing the O(4) hyperspherical harmonic Y22

00
(which is related to the O(3) spherical harmonic Y20(α, φ) of the shape space
(hyper)spherical angles (α, φ), i.e., the V4 term in the notation of Richard
and Taxil [17]) that is present in both the two-body and the Y-string poten-
tials; and (3) the O(2) symmetry-breaking term containing Y33

0±3'Y3±3(α, φ),
i.e., the V6 term in the notation of Richard and Taxil [17], that is important
in the two-body potentials, and not at all in the Y-string potential Eq. (2).

3. Results

We have evaluated the K = 2, 3 bands’ splittings in 2D, Ref. [16] and
compare them with the 3D case, Ref. [17]:

(1) The only difference between the 2D and 3D K = 2 states’ splittings is
that the [70, 0+] and [56, 2+] states are degenerate in 2D, whereas in
3D they are split by one half of the energy difference between [70, 2+]
and [70, 0+]. This shows that the 2D case does relate fairly closely to
the 3D one.

(2) We compare our 2D Y-string potential K=3 results with the 3D K=3
two-body potential results of Ref. [17] and find certain similarities, and
a few distinctions. There are six SU(6) multiplets in the K = 3 sector
(other than the hyper-radial excitation [70, 1−]

′′ of the K = 1 state):
[20, 1−], [56, 1−], [70, 3−], [56, 3−], [70, 2−], [20, 3−] in 3D. The main
difference between the 2D and 3D is that the [70, 2−] state disappears
in 2D.
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In 3D two-body potential the energy splittings can be divided in two
parts in Ref. [17]: (a) those due to the V4 perturbation; and (b) due to the
V6 perturbation. This corresponds to our Y20 and Y3±3 terms, respectively.

(a) In the V4 6= 0, V6 → 0 limit, the states can be (roughly) divided in
two groups: the [20, 1−], [56, 1−], [70, 3−] which are pushed down, and
the [56, 3−], [70, 2−], [20, 3−] which are pushed up by the V4 pertur-
bation. Two pairs of states are left degenerate: ([20, 1−], [56, 1−]) in
the lower set and ([56, 3−], [20, 3−]) in the upper set. In this limit,
in 2D we find complete degeneracy of all three members of the lower-
([20, 1−], [56, 1−], [70, 3−]) and upper levels ([56, 3−], [70, 2−], [20, 3−]),
Fig. 2 (b).

(b) In the V4 6= 0, V6 6= 0 case, the remaining degeneracy of states is
removed in 3D, Fig. 2 (a): the [20, 1−] and the [56, 1−] are split in the
“lower set” and the [56, 3−] and the [20, 3−] in the “upper set”. In 2D,
we find the same pattern of splitting, and a similar ratio of strengths,
Fig. 2 (b).
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Fig. 2. Schematic representation of the K = 3 band in the energy spectrum of
the ∆-string potential in (a) three dimensions, following Ref. [17]; and (b) two
dimensions (present calculation). The sizes of the two splittings (the v∆

20-induced
∆ and the subsequent v∆

3±3-induced splitting) are not on the same scale, the latter
having been increased, so as to be clearly visible. The ∆ here is the same as the
∆ in the K = 2 band.
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So, in the K = 2, 3 bands, one sees similarities of dynamical symmetry-
breaking patterns in 2D and 3D. This lends credence to the belief that this
similarity may persist at higher values of K, where there are not known 3D
results, at present.
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