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The phase transitions characterized by deconfinement and restoration
of chiral symmetry as well as the restoration of axial symmetry, at finite
temperature, are investigated in the framework of SU(2) Polyakov–Nambu–
Jona-Lasinio (PNJL) models with the UA(1) anomaly. The thermodynam-
ics of the phase transitions, the topological susceptibility, the meson spec-
trum, and, in particular, the convergence of axial and chiral partners are
analysed, in the framework of the ordinary PNJL model and its extension,
the entangled Polyakov–Nambu–Jona-Lasinio (EPNJL) model. The lat-
ter incorporates entanglement between restoration of chiral symmetry and
deconfinement.
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An important field of research nowadays, both in experimental and the-
oretical physics, is the study of matter under extreme conditions of temper-
atures and/or densities. Quantum chromodynamics (QCD) predicts that,
in this limit, matter becomes a plasma of deconfined quarks and gluons.
In spite of the success of many aspects of the strong interaction physics,
there are important features to clarify and, in this context, the use of QCD
inspired effective models has proven to be a useful approach.

∗ Presented at the Workshop “Excited QCD 2013”, Bjelašnica Mountain, Sarajevo,
Bosnia–Herzegovina, February 3–9, 2013.

(917)

http://www.actaphys.uj.edu.pl/sup7/abs/s7p0645


918 M.C. Ruivo, P. Costa, C.A. de Sousa

The Polyakov–Nambu–Jona-Lasinio model is an effective model which
respects important symmetries of the QCD action. It contains quarks as
fundamental degrees of freedom allowing for a self-consistent description of
chiral symmetry breaking and restoration. In addition, the coupling to the
Polyakov loop allows to describe the (statistical) confinement/deconfinement
phase transition by taking into account a static gluonic field in which quarks
propagate [1–3]. An important query in QCD thermodynamics is the prox-
imity or coincidence of the chiral and deconfinement phase transitions. In
this concern, lattice QCD results have been a matter of debate: the two
phase transitions are reported to occur at distinct temperatures for Nf =
2 + 1 flavors [4], but at the same temperature, TC = 174(3)(6) MeV, for
Nf = 2 flavors [5]. This effect could be the result of strong correlations
(entanglement) between the quark condensate and the Polyakov field, Φ, an
effect that is incorporated in the entangled Polyakov–Nambu–Jona-Lasinio
model [6].

The restoration of the UA(1) symmetry is also a longstanding question
and phenomenological consequences for the nature of the phase transition
are expected to occur, depending on the degree of anomaly present at the
critical temperature. Moreover, the topological susceptibility, the meson ax-
ial chiral partners and the η′ mass can exhibit signs of the restoration of
the UA(1) symmetry. Lattice calculations with three flavours have found
evidence for the decrease of the topological susceptibility with temperature
and for convergence of the meson correlators of chiral and axial partners
when both symmetries are restored. The return of the 9th “prodigal” Gold-
stone boson has been a matter of debate and recent experimental results are
compatible with a decrease of about 200 MeV for the in medium mass of the
η′ meson (see [8] and references therein).

QCD inspired models have been used to study the restoration of axial
symmetry, in particular, the NJL model and its extended version, the PNJL
model. In previous investigations, both in NJL model and PNJL SU(3)
models [9], it has been found that observables related with the UA(1) sym-
metry breaking vanish as a natural consequence of the effective restoration
of chiral symmetry, provided a specific regularization is used [9]. However,
the situation is different in the framework of the SU(2) models (see [7, 8])
where an additional mechanism of instantons suppression is needed.

The SU(2) PNJL Lagrangian with a ’t Hooft interaction simulating the
UA(1) anomaly [2, 7] is given by

LPNJL = q̄ ( i γµDµ − m̂) q + L1 + L2 − U
(
Φ[A], Φ̄[A];T

)
, (1)

with two different interacting parts

L1 = g1

[
(qq)2 + (q̄iγ5~τq)

2 + (q̄~τq)2 + (q̄iγ5q)
2
]
, (2)
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L2 = g2

[
(q̄q)2 + (q̄iγ5~τq)

2 − (q̄~τq)2 − (q̄iγ5q)
2
]
, (3)

where q = (u, d) are the Dirac and color fields, with two flavors, Nf = 2,
and three colors, Nc = 3, the coupling coefficients g1 and g2 have dimension
energy−2, and m̂ = diag(mu,md) is the current quark mass matrix, here
being assumed thatmu = md = m. Both terms L1 and L2 are invariant upon
SU(2)L⊗SU(2)R⊗U(1) type transformations, but L2, that can be written as
a determinant (see [7]), is not invariant upon UA(1) transformations.

The Lagrangian density (1) can be rewritten as

LPNJL = q̄ ( i γµDµ − m̂) q +Gs

[
(q̄q)2 + (q̄iγ5~τq)

2
]

+Ga

[
(q̄~τq)2 + (q̄iγ5q)

2
]
− U

(
Φ[A], Φ̄[A];T

)
, (4)

where Gs = g1 + g2 and Ga = g1− g2 enter, respectively, in the propagators
of the meson chiral partners (π, σ) and (η, a0). We can redefine the coupling
constants such as the set (g1, g2) or (Gs, Ga) will be replaced by (G, c) in
the following parametrization

Gs = g1 + g2 = G , Ga = g1 − g2 = G (1 − 2 c) , (5)

where c ∈ {0, 1} is a parameter that now specifies the degree of UA(1)
symmetry breaking. Notice that g1 = G (1 − c) is associated with chiral
symmetry effects, while g2 = cG is the anomaly coefficient and is here 25%
of g1. The parameters in the NJL sector of the model are m = 6 MeV,
Λ = 590 MeV, GΛ2 = 2.435, c = 0.2, and were fixed by fitting lattice
or experimental values for the pion mass, its decay constant, the quark
condensate and the topological susceptibility, χ. The masses of the σ, η
and a0 mesons come as outputs (for details, see [7, 8] and references therein).

The quarks are coupled to the gauge sector via the covariant derivative
Dµ = ∂µ− iAµ, where Aµ(x) = gStrongAµa(x)λa2 and Aµa is the SUc(3) gauge
field and λa are the Gell-Mann matrices. The Polyakov loop Φ is the trace
of the Polyakov line defined by Φ = 1

Nc
〈〈P exp i

∫ β
0 dτ A4 (~x, τ) 〉〉

β
.

The effective potential for the Polyakov loop is

U
(
Φ, Φ̄;T

)
T 4

= −a (T )

2
Φ̄Φ+b(T )ln

[
1− 6Φ̄Φ+ 4

(
Φ̄3 + Φ3

)
− 3

(
Φ̄Φ
)2]

. (6)

The parameters of the effective potential U , that have been fixed in order
to reproduce the lattice data for the expectation value of the Polyakov loop
and QCD thermodynamics in the pure gauge sector, are: a0 = 3.51, a1 =
−2.47, a2 = 15.2, b3 = −1.75; the parameter T0 is the critical temperature
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for the deconfinement phase transition within a pure gauge approach and it
was fixed to 270 MeV.

The PNJL model with the original T0 = 270 MeV yields to a small differ-
ence between chiral and deconfinement transition temperatures. This value
is, however, significant when we rescale T0 to 210 MeV, derived by RG con-
siderations so as to reproduce the lattice QCD result, Td = 177 MeV. This
leads to taking into account back-reaction of quarks on the gluon sector.
Consequently, the PNJL result is not consistent with lattice QCD data for
the transition temperatures and entanglement between chiral and deconfine-
ment transitions is weak in this model. The EPNJL model [6] incorporates
entanglement by endowing the four-quark coupling vertex G with a depen-
dence on the Polyakov field, Φ, in the form

G(Φ) = G
[
1 − α1 ΦΦ̄ − α2

(
Φ3 + Φ̄3

)]
, (7)

which respects chiral, P , C and the extended center symmetries. The pa-
rameters α1 = α2 = 0.2 and T0 = 170 MeV, taken from reference [6], were
fixed to reproduce the available lattice QCD data.

As it can be seen in Table I, in the PNJL model Tχ and Td never co-
incide but are closer for higher values of T0, so it is adequate to choose
T0 ' 270 MeV. In the EPNJL model, where ∆ = (Tχ − Td)/Tχ = 0 by
construction, we have more freedom to fix T0 and a lower value is conve-
nient (T0 ' 170 MeV) since it allows to reproduce lattice results for the
critical temperature. The results are presented for one of the two scenarios
presented in [8], scenario B, for reasons that will be explained latter.

TABLE I

Characteristic temperatures in PNJL and EPNJL model for different values of T0

(∆ = (Tχ − Td)/Tχ). Teff is the temperature at which the effective restoration of
both symmetries is achieved.

Scenario B T0 Tχ Td ∆ Teff

[MeV] [MeV] [MeV] — [MeV]

PNJL 210 215 177 18% ∼ 250
270 237 219 8% ∼ 300

EPNJL 170 173 173 — ∼ 200
270 223 223 — ∼ 300

Notice that at finite T , due to the presence of the partition functions,
the finite cutoff, Λ, used in the vacuum to regularize integrals, is not neces-
sary and we make Λ −→ ∞. This procedure ensures that the pressure goes
to the Stefan–Boltzmann limit and leads to a better description of several
thermodynamic quantities. It has the disadvantage of leading to a sharp
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decrease of the quark condensates that do not vanish assimptoticaly and
change sign unless a mechanism is imposed by hand to avoid this (for de-
tails, see [9]). In SU(3) NJL and PNJL models, the effective restoration of
axial symmetry occurs as consequence of the full restoration of chiral sym-
metry. As a matter of fact, since in those models the ’t Hooft interaction is a
six-quark interaction, that in the usual approach is reduced to a four-quark
interaction by means of a Wick contraction of a quark–antiquark pair, we
have a kind of “effective” ’t Hooft coupling coefficient, G̃D = GD 〈q̄q〉, and,
therefore, the anomaly effects disappear when the quark condensate anihi-
lates. This is not so in the SU(2) models where the ’t Hooft interaction is
a four-quark vertex. In SU(2) models (even in the EPNJL model where the
coupling vertices have a dependence of temperature through the Polyakov
field, Φ), a fraction of the anomaly remains in the chiral restored phase
because, although the topological susceptibility vanishes, the meson axial
partners do not converge. In order to get this convergence, it is enough
that only g2 acquires the adequate dependence on temperature and g1 is
kept constant (scenario A, [8]). Alternatively, we can allow both g1 and
g2 depend simultaneously on temperature, using the redefinition of Eq. (5),
with c(T ) = 0.2f(T ), where f(T ) = 1/ (1 + exp ((T − T0)/10)), while G is
kept constant. In the EPNJL model, we have an equivalent explicit tem-
perature dependence: g1(Φ, T ) = G(Φ)(1 − c(T )), g2(Φ, T ) = G(Φ) c(T )
(scenario B, [8]). Both scenarios insure the vanishing of the anomaly and,
therefore, the convergence of axial partners, but in scenario A, for both mod-
els, there is a unphysical region of negative pressures for low values of T0.
This problem that does not exist in scenario B, that allows more freedom in
the choice of T0. Here, we will only discuss this last scenario.

In Fig. 1 we plot the PNJL results for the meson masses, considering
two values of T0. For T0 = 270 MeV, the convergence of chiral partners
occurs first than that of axial partners, as usual, with Teff ≈ 300 MeV.
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Fig. 1. Meson masses in PNJL (upper panels) and EPNJL (lower panels) models.

The new finding is that for T0 = 210 MeV the chiral and axial partners
get degenerate very closely and Teff is lower. Concerning the topological
susceptibility, it always vanishes, this effect being driven by the vanishing of
the quark condensate.

The behavior of the meson masses and topological susceptibility in the
EPNJL model is qualitatively similar to PNJL model, as it can be seen in
Fig. 1. Here, also the restorations of chiral and axial symmetries become
closer for low values of T0, but the temperatures for the effective restoration
of symmetries are slightly lower. We conclude that in EPNJL there is entan-
glement between deconfinement and restoration of chiral symmetry but not
with restoration of axial symmetry. Restoration of axial symmetry requires
an additional mechanism of instanton suppression.
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