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We show how excited states in QCD can be profitably used to build
up the Polyakov loop in the fundamental representation at temperatures
below the hadron–quark-gluon crossover. The conditions under which a
Hagedorn temperature for the Polyakov loop can be defined are analyzed.
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1. Introduction

The QCD equation of state can be derived from the partition function

Z(T ) = Tr e−H/T =
∑
n

gne
−En/T . (1)

In lattice QCD with 2+1 flavours, Z(T ) has been evaluated by the HotQCD
[1] and Wuppertal–Budapest [2] collaborations producing different results
for the trace anomaly at temperatures above T = 200 MeV, already beyond
the hadron–quark-gluon crossover [3]. On the other hand, quark-hadron
duality at finite temperature requires that for confined states Z should be
determined from all stable hadron states such as those in the PDG book-
let [4]. This is the idea behind the Hadron Resonance Gas (HRG), a multi-
component gas of non-interacting massive stable and point-like particles [5]
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which has historically arbitrated the discrepancies between different lattice
groups [6–8]. Remarkably, the disagreement still persists beyond the ex-
pected range of validity of the HRG model (see e.g. Fig. 1, right).
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Fig. 1. Left: Cumulative number n as a function of the hadron mass M (in MeV)
with u, d and s quarks, computed in the RQM [13, 14] and compared to a fit
n(M) = AeM/TH . Right: Trace anomaly (ε− 3p)/T 4 as a function of temperature
(in MeV). We compare lattice data for asqtad and p4 [15] (after temperature down-
shift of T0 = 15 MeV) and stout [16] actions, with the HRGM computed with the
RQM spectrum with u, d and s quarks from Refs. [13, 14].

The special role played by the HRG does not make it a theorem and
corrections to it are not completely clear as PDG hadrons are composite,
have finite size and width. On the lattice, the validity of the HRG has been
checked in the strong coupling limit and for heavy quarks to lowest orders [9].
In the usual large Nc-limit (see Ref. [10] for a review and references therein)
where hadrons become stable resonances, Γ/M = O(1/Nc), the mesons give
a finite contribution as their mass and degeneracy are finite, whereas baryons
would provide a vanishing contribution. The half-width rule [11] applied to
PDG resonances [4] provides compatible uncertainties with current lattice
calculations [2].

To saturate the partition function, Eq. (1) with light or heavy quarks,
a large number of highly excited states is needed so relativistic corrections are
important. Here, we will use the MIT Bag model [12] and the Relativized
Quark Model (RQM) of Refs. [13, 14] which treats hadrons as extended
bound states rather than resonances.

2. Trace anomaly and light quarks

The trace anomaly measures departures from scale invariance and reads

A(T ) ≡ ε− 3p

T 4
= T

∂

∂T

( p

T 4

)
(2)



Excited Hadrons, Heavy Quarks and QCD Thermodynamics 955

after using standard thermodynamics relations for the energy density ε =
E/V and pressure p = +T logZ/V . For the HRG model, we have

A(T ) =
1

T 4

∞∫
0

dM
dn(M)

dM

∫
d3k

(2π)3

(
Ek − ~k · ∇kEk

)
eEk/T ± 1

, (3)

where Ek =
√
k2 +M2 and ± corresponds to fermions/bosons and

n(M) =
∑
α

gαΘ(M −Mα) (4)

is the cumulative number (Θ is the step function). Hagedorn proposed that
the cumulative number of hadrons in QCD is approximately and asymp-
totically given by n(M) = AeM/TH , where A is a constant and TH is the
so-called Hagedorn temperature. We show results in Fig. 1 both for n(M)
and A(T ) fitted with A = 0.80 and TH = 260 MeV, and also showing the
good performance of the HRG below T = 180 MeV when the RQM is used.

3. Polyakov loop and heavy quarks

The Polyakov loop is a purely gluonic operator, which in gluodynamics
becomes a true order parameter as it signals the breaking of the center
symmetry and deconfinement. Unlike the trace anomaly, there is lattice
consensus on this observable [16, 17] so its analysis may be more credible. We
have shown that in QCD [18, 19] and in chiral quark models [20] a hadronic
representation exists and is given by (A0 is the gluon field)

LT =
〈

trcPe
i
∫ 1/T
0 A0 dx0

〉
=

1

2

∫
d∆

∂n(∆)

∂∆
e−∆/T , (5)

where the cumulative number reads now

n(∆) =
∑
α

ghαΘ(∆−∆α,h) , (6)

where ghα are the degeneracies and ∆hα = Mhα − mh are the masses of
hadrons with exactly one heavy quark (the mass of the heavy quark itself
mh being subtracted).

The result with u, d and s quarks, computed in the RQM [13, 14] when
the large but finite charmed quark mass, mh = mc (using b-quarks does not
change much) is taken, is presented in Fig. 2. We have checked that results
are not very sensitive to use bottom quarks instead. A fit n(∆) = Ae∆/TH to
the total contribution produces A = 0.216, 0.209 and TH = 236, 207 MeV for
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single-charmed, bottom hadrons for the range of 1 GeV ≤ ∆ ≤ 1.8 GeV. The
results from PDG and RQM are multiplied by a factor L(T ) → eC/TL(T ),
with C = 25 MeV, which comes from an arbitrariness in the renormalization.
The sum rule has been implemented on the lattice recently [21].
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Fig. 2. (color on-line) Left: Cumulative number n as a function of the c-quark mass
subtracted hadron mass ∆ = M −mc (in MeV) with u, d and s quarks, computed
in the RQM [13, 14] and compared to a fit n(∆) = Ae∆/TH . Right: Polyakov loop
as a function of temperature (in MeV). Lattice data from [17] for the HISQ/tree
action and [16] for the continuum extrapolated stout result. We compare lowest-
lying charmed hadrons from PDG [4], the RQM spectrum with one b quark and
a cut-off ∆ < 1700 MeV dashed (red) line, and ∆ < 5500 MeV and the MIT bag
model (mh → ∞) with cut-off ∆ < 5500 MeV is shown as a dash-dotted (blue)
line [18].

4. The non-overlapping condition

In the quantum virial expansion [22], the excluded volume corrections
come from repulsive interactions, whereas resonance contributions stem from
attractive interactions. A good example is ππ scattering where one has
attractive and resonating states in the isospin I = 0, 1 corresponding to the
σ and ρ resonances, whereas one has a repulsive core in the I = 2 exotic
channel [23, 24] providing a measure of the finite pion size. In contrast,
the HRG assumes point-like elementary particles. However, in the narrow
width limit, resonances also have a finite size as they become bound states.
Clearly, when hadrons overlap, the HRG model becomes invalid since the
Pauli principle blocks many states allowed by colour neutrality. The non-
overlapping condition corresponds to the inequality for the Co-Volume

CoV ≡
∑
i

ViNi ≤ V ,
∑
i

Vi

∫
d3p

(2π)3

gi

eEi(p)/T ± 1
≤ 1 . (7)

The hadron size can be estimated from the MIT bag model where one has [12]
Vi = Mi/(4B). In the RQM [13, 14], one might compute the size directly
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from the m.s.r. of the wave functions. A meson model of the form M =
2p + σr with p ∼ 1/r yields after minimizing V = 4πr3/3 ∼ M3/σ3. In
Fig. 3, we see that for T = 160–170 MeV hadrons overlap and the HRG
departs from the lattice QCD results (see Fig. 1, left).
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Fig. 3. (color on-line) Left: Non-ovelapping condition as a function of temperature.
For the hadron volume, we use Vi = Mi/4B with B = (0.166 GeV)4 for the MIT
bag volume (solid/blue) and also Vi = M3

i /σ
3 with

√
σ = 0.42 GeV (dashed/red).

Right: Cumulative number n(∆) in the MIT Bag model. We include contributions
from Qq̄, Qqq and Qq̄qq̄.

5. Hagedorn and the bootstrap

The cumulative numbers computed in the RQM exhibit lower thresholds
for mesons than baryons but the latter dominate due to the larger multiplic-
ity of qqq than qq̄ states, and eventually an exponential growth characterized
by a Hagedorn temperature seems to set in (Figs. 1 and 2). Due to the finite
number of degrees of freedom, both mesons and baryons have a power-like
behaviour for large masses M �

√
σ producing a dimensional estimate

nq̄q(M) ∼ M6/σ3 and nqqq(M) ∼ M12/σ6 featuring the available phase
space. An intriguing issue is under what conditions this exponential growth
goes on high up in the spectrum as initially speculated by Hagedorn [5]. In
Fig. 3 (right) we show n(∆) = nQq̄(∆)+nQqq(∆)+nQq̄qq̄(∆)+. . . in the MIT
Bag model including also the exotic tetraquark Qqq̄q̄ states as independent
hadronic states. The fit yields TH ∼ 191 MeV, complying with the bootstrap
mechanism proposed long ago [25, 26]. Since some of the tetraquark states
are of molecular nature, it is unclear if they should be incorporated in the
cumulative number. This is related to the completeness or redundancy of
hadronic states, particularly in the PDG as noted in [11].
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6. Conclusions

The thermodynamical analysis of the hadronic spectrum has an increas-
ing lack of energy resolution for increasing temperatures and a slowly con-
verging pattern requiring many excited states. On the other hand, lattice
calculations become difficult at very low temperatures where the main en-
ergy gaps are found. While this explains why the HRG model works well
as function of temperature it is not obvious how to systematically compute
deviations from this simple limit.
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