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STUDY OF THE TETRAQUARK SYSTEM
FROM MESON–MESON SCATTERING
WITH A COLOR FLIP–FLOP MODEL∗
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In this work, we briefly review the lattice results for the two quark
and two antiquarks system in the static limit, in particular the flux-tube
recombination. Then, we first review the results obtained for a simple
model developed to described tetraquarks. A flip–flop potential which takes
into account the color structure is then developed. With this model, we
study meson–meson scattering, for a system of two equal quarks and two
equal antiquarks. By integrating out the internal degrees of freedom, we
arrive at a coupled channel Schrödinger equation, from which we find bound
states and resonances, corresponding to tetraquark states.
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1. Introduction

A long standing issue in strong interaction physics is the existence of
hadronic particles, with a valence constitution different from QQ̄ and QQQ,
such as tetraquarks made of two quarks and two antiquarks. Experimen-
tally, several particles have been advanced as candidates (for instance [1, 2]).
Theoretically, the problem is a very interesting one for various reasons, for
instance, it is a system of four particles interacting through a four-body po-
tential and also because it is the simplest strong interacting system where
more than one color singlet is possible.

2. QQQ̄Q̄ system

Now, we consider a system of two quarks Q1Q2 and two antiquarks
Q3Q4. The study of this kind of systems is important for the under-
standing of meson–meson scattering processes and the possible formation
of tetraquarks particles made of two valence quarks and two valence anti-
quarks.

∗ Presented at the Workshop “Excited QCD 2013”, Bjelašnica Mountain, Sarajevo,
Bosnia–Herzegovina, February 3–9, 2013.

(979)



980 M. Cardoso, P. Bicudo, N. Cardoso

In this system, we have two linearly independent color singlets. Those
can be the two meson states: |CI〉 = 1

3 |QiQjQiQj〉 and |CII〉 = 1
3 |QiQjQjQi〉,

or the anti-symmetric and symmetric color states: |A〉 =
√
3
2

(
|CI〉 − |CII〉

)
and |S〉 =

√
3
8

(
|CI〉+ |CII〉

)
.

We know from lattice results [3, 4] that the ground state potential is
given by VFF = min(VI , VII , VT ), where VI and VII are the sum of the intra-
meson potentials VI = VM (r13) and VII = VM (r24). This is well modeled
by the Cornell potential: VM = K − γ

r + σr. VT is the tetraquark potential
which confines the four particles, being given by VT = 2K − γ

∑
i<j

Cij

rij
+

σLmin(x1,x2,x3,x4). Variational calculations in [5] indicate that this po-
tential could bind a tetraquark. This kind of potentials [6] were first intro-
duced as a way to prevent the long range non-physical behavior [7] present
in the sum of two bodies Casimir scaled potentials VC =

∑
i<j CijV (rij).

3. Chromo-fields results

Using the same operator as [3, 4] and then a variational basis, we were
able to find color fields for a QQQ̄Q̄ state [8, 9]. The results for the La-
grangian density L in the ground state is given in Figs. 1 and 2. There, we
can see that at the ground state the system collapses in a two meson state,
when the two QQ̄ pairs are far apart, as expected. However, when the two

Fig. 1. Lagrangian density for the ground state of the antiparallel geometry, with
the quarks at opposite corners of a rectangle.

Fig. 2. Lagrangian density for the ground state of the parallel geometry, with both
quarks at the bottom.
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quarks are far from the two antiquarks, the stablest string configuration is
one where the four particles are linked together, corresponding to the VT
sector of the flip–flop potential.

4. Simplified model

First, we use a simplified model to study the possible tetraquark bound
states and resonances. To achieve this, we simply use the potential

VFF = σmin
(

2r,
√

3ρ+ r
)
. (1)

We can find directly the bound states by diagonalizing the Hamiltonian.
With this method we find a bound state for lr = 3 (Fig. 3). However, we
can also find resonances in this model. For this, we project the wavefunction
in the asymptotic “meson” states ψi(ρ) =

∫
d3r φ∗i (r)Ψ(r,ρ) with φi being

the eigenfunctions of the “meson states” − ~2
2m∇

2
rφi+2σrφi = εiφi. This way

we arrive at a coupled channel Schrödinger equation

− ~2

2m
∇2ψi + Vijψj = (E − εi)ψi . (2)

By studying the asymptotic behavior of this equation, we can determine
the phase shifts of the model.

As we can see in Fig. 3, we find resonances in channels with non-null
angular momentum. So with this model, we predict that tetraquarks should
have high orbital angular momentum. This is in accordance with previous
works, for instance [10], where it was predicted that the existence of a cen-
trifugal barrier between the diquarks would prevent the recombination of
the system into two meson, this way retarding the system decay.
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Fig. 3. Left: Bound state for lr = 3. Right: Phase shifts for the lowest radial states
of the simplified model. Note resonances for lr 6= 0.
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5. Potential

Several approximations were made in the previous session. One of them
was that only one of the two meson–meson sectors was considered. Another
one was the neglect of the internal color degrees of freedom of the system. As
was said before, the system could form two linearly independent color sin-
glets and as nothing forbids the transition between them, our potential could
be represented by a 2× 2 matrix. We know from lattice results that lowest
eigenvalue is given by v0 = min(VI , VII , VT ). To reconstruct the potential
matrix, we need both the eigenvalues and the corresponding eigenvectors.
The eigenvector of the ground state is already known. It will be |CI〉, |CII〉
and |A〉, depending on which of the three branches of the potential the sys-
tem is. Since the matrix has to be Hermitian, its eigenvectors have to be
orthogonal. Thus, the second eigenvector has to be orthogonal to the first
one. As for the second eigenvalue, we assume, for the transition to be as
smooth as possible, the following hypothesis:

v1 = min(VII , VT ) when v0 = VI ,

v1 = min(VI , VT ) when v0 = VII ,

v1 = min(VI , VII) when v0 = VT .

This hypothesis seems to be supported by some lattice results [11]. So
with this, we can construct a flip–flop potential which is free from non-
physical Casimir forces and which takes into account the color degrees of
freedom of this system.

6. Meson–meson scattering

Now, we solve the problem of meson–meson scattering trying to find
bound states and resonances which correspond to tetraquark states. Here,
we first expand the wavefunction in the basis of two-meson states, that is
|Ψ〉 = ΨA|CA〉. Note that this basis is not orthogonal 〈CI |CII〉 6= 0. However,
we can introduce a contravariant basis |CA〉, for which 〈CA|CB〉 = δAB. This
way, we choose the scattering kinetic operator as T̂S = (T̂+V̂I)|CI〉〈CI |+(T̂+

V̂II)|CII〉〈CII |, corresponding to the kinetic energy of two free meson states
in both color states of the basis. It follows then that the scattering potential
is given by V̂S = V̂ − V̂I |CI〉〈CI | − V̂II |CII〉〈CII |. Now, if we expand the
two color components of the wavefunction as ΨA =

∑
i φ

1
i (ρ1)φ

2
i (ρ2)ψ

A
i (rA)

and integrate the intra-mesonic degrees of freedom, we arrive at a coupled
channel Schrödinger equation

− ~2

2µα
∇2ψα(r) +

∫
d3r′ vαβ

(
r, r′

)
ψβ
(
r′
)

= (E − εα)ψα(r) . (3)
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Here, the Greek letter indices represent both the color index A and the
other quantum numbers i. This equation is similar to Eq. (2), except that
the potential is non-local between two different color states (because the
simplified model has only one color state).

In the following calculation, we will only consider systems made exclu-
sively from heavy (c and b) quarks. This way, we will consider the kinemat-
ics of the meson–meson system as non-relativistic, although considering the
masses of the mesons in the reduced masses. In the interaction potential, we
will only consider the spin independent part, neglecting this way all the spin
effects. We will also not consider quark–antiquark creation and destruction
effects.

Here, it will be considered the case of an exotic tetraquark, constituted by
two quarks of the same flavor and two similar antiquarksQQq̄q̄, in particular,
bbc̄c̄. In this case, we can see that the Hamiltonian has the form

Ĥ =

[
D̂ Â

Â D̂

]
.

Therefore, its eigenfunctions can be given by Ψξ =

[
u
ξu

]
, with ξ = ±1.

We present in Figs. 4 and 5 results, respectively, for L = 0 and for L = 1
for both values of ξ. Here, the parameters σ = 0.19 GeV2 and α = 0.4 are
used for the potential parameters.

As can be seen, we are able to find a bound state for both L = 0 with
ξ = +1. By calculating directly the eigenvalues of the Hamiltonian, we find
it to have a binding energy of less than 1 MeV. For the other combinations
of L and ξ, we do not find any bound state, but resonances are found for
L = 0 with ξ = −1 and L = 1 with ξ = +1. Note however, that we only use
two two-meson states for L = 1, while for L = 0 four states are used.

12,5 13 13,5

E (GeV)

0

0,2

0,4

0,6

0,8

1

δ/
π

(n=0,l=0)+(n=0,l=0) l
r
=0

(n=0,l=0)+(n=0,l=1) l
r
=1

(n=0,l=0)+(n=1,l=0) l
r
=0

(n=0,l=1)+(n=0,l=1) l
r
=0

L = 0, ξ = +1

12,6 12,8 13 13,2 13,4

E (GeV)

0

0,25

0,5

0,75

1

δ/
π

(n=0,l=0)+(n=0,l=0) l
r
=0

(n=0,l=0)+(n=0,l=1) l
r
=1

(n=0,l=0)+(n=1,l=0) l
r
=0

(n=0,l=1)+(n=0,l=1) l
r
=0

L = 0, ξ = −1

Fig. 4. Phase shifts for the L = 0 channel, for both values of ξ. Note the bound
state for ξ = +1 and the resonance for ξ = −1.
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Fig. 5. Phase shifts for the L = 1 channel, for both values of ξ. Note the resonance
for ξ = +1.

7. Conclusion

Here, an unitarized potential model for the computation of the meson–
meson scattering was developed. This model was then applied to the heavy
quark limit with spin effects neglected, where we found a very weak bound
state (with binding energy with less than 1 MeV) and resonances for both
L = 0 and L = 1. Refinement in this procedure can be done, by changing
the potential to include other effects such as spin–spin interactions or to use
other models of confinement. This procedure is also valid to complex energy
and so it can, in principle, be used to find directly the poles of the T matrix,
by using numerical methods such as the Newton’s method.
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