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We present an effective Lagrangian model calculation of the process
πN → Ne+e−. We discuss in some detail the description of electromag-
netic interaction of hadrons using a variant of the vector meson dominance
model, and the problem of gauge-invariance preserving form factors for
Born contributions.
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1. Introduction

Dileptons are electron–positron (or muon–antimuon) pairs. In hadronic
and nuclear collisions, dileptons usually originate from the decay of a vir-
tual photon. Neutral vector mesons (ρ0, ω, and φ) have the same quantum
numbers as the photon, therefore, they can directly decay to a dilepton. Ac-
cording to the vector meson dominance model, this decay proceeds through
a conversion to a virtual photon.

Dileptons receive special attention in the study of heavy ion collisions.
This is because leptons do not participate in the strong interaction, therefore,
they leave the interaction volume undisturbed, carrying information from the
dense phase of the collision. In particular, the invariant mass of dileptons
gives the mass of the decaying virtual photon or vector meson. Thus, the in-
medium spectral function of vector mesons can be studied via the dilepton
invariant mass spectrum.

Many different channels contribute to the dilepton spectrum of hadronic
or heavy ion collisions (e.g. pion annihilation, Bremsstrahlung, Dalitz-decay
of meson or baryon resonances) making it difficult to identify vector mesons
in the dilepton spectrum. Theoretical models should deal with all possible
reaction channels.
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In the study of dilepton production in nucleon–nucleon collisions, we
have learnt that an effective Lagrangian treatment is needed to describe the
experimental data [1, 2].

In a heavy ion collision, the most abundant secondary particles are pi-
ons, therefore, the second most frequent elementary reaction channel (after
N+N) is π+N . The HADES Collaboration in GSI has plans for experiments
with pion beams. During these experiments, dilepton production in elemen-
tary pion–nucleon collisions will be studied too. Motivated by the above, we
developed an effective Lagrangian model for the reaction π+N → N+e+e−.
Details of the model are published in [3].

2. Elements of the effective Lagrangian model

The Feynman diagrams contributing to the process π+N → N+e++e−

are depicted in Fig. 1. These are: the Born contributions [(a) s-, (b) u-,
and (c) t-channel diagrams, and (d) contact interaction term], (e) vector
meson exchange diagram, (f) s-channel and (g) u-channel baryon resonance
contributions.

Fig. 1. Feynman diagrams contributing to the process π +N → N + e+ + e−.
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2.1. Electromagnetic interaction of hadrons

The main assumption of the vector meson dominance (VMD) model
is that all hadrons couple to the electromagnetic field via an intermediate
neutral vector meson which then converts to a photon. Here, we use a
simplified version of VMD where only the ρ0 meson is taken into account,
and the ρ–γ conversion is described by the Lagrangian

Lργ = − e

2gρ
Fµνρ0µν , (1)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor and
ρ0µν = ∂µρ

0
ν − ∂νρ0µ.

This form of the ργ coupling has some advantages over the more fre-
quently used Lργ ∝ ρ0µAµ. First, the Lagrangian Eq. (1) is gauge invariant.
Second, it does not contribute to decays with real (on-shell) photons in the fi-
nal state. Indeed, the intermediate vector meson in electromagnetic vertices
results in the appearance of a form factor given by

FVMD

(
k2
)
= − e

gρ

k2

k2 −m2
ρ + i

√
k2Γρ (k2)

, (2)

where k is the photon four-momentum. One is then forced to introduce a
direct photon coupling for all hadrons in addition to the VMD coupling. The
coupling constant of the direct photon coupling is determined from processes
with real photons in the final state (e.g. Nγ decays of baryon resonances),
while the vector meson couplings are obtained from decays to vector mesons.

To ensure the electromagnetic U(1) gauge invariance, we introduce the
direct photon couplings of hadrons and couplings of ρ mesons to other
hadrons via the gauge covariant derivative

∇µ = ∂µ + ieAµQ− ig̃ρ~ρµ · ~T , (3)

where Q is the electric charge, and ~T denotes the generators of the isospin
SU(2) group. The inclusion of the ρ-meson field in the covariant deriva-
tive is necessary because the full electromagnetic vertex contains the VMD
contribution, which is related to the hadron-ρ vertex.

2.2. Form factors and gauge invariance

At the level of the effective Lagrangians, hadrons appear as elementary
fields. The internal structure, or, in other words, the non-point-like nature
of hadrons is accounted for by the inclusion of form factors at every ver-
tex containing internal (off-shell) hadron lines. In this work, we used form
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factors of the form

F
(
p2
)
=

1

1 +
(
p2 −m2

N

)2
/Λ4

, (4)

where p2 is the four-momentum squared of the internal (off-shell) hadron.
In the case of Born contributions [diagrams (a)–(d) in Fig. 1], a subtle

problem related to gauge invariance arises. Only the sum of all Born di-
agrams is gauge invariant, the individual diagrams are not. Consequently,
gauge invariance is lost if one introduces different form factors for each of
the Born diagrams.

This problem has been solved for the case of pion-photoproduction in
Ref. [4], and the solution can be generalized for the present case. The main
idea is that although the Born contribution is not gauge-invariant after the
inclusion of the hadronic form factors, it can be shown, that the non-gauge-
invariant part is free from (propagator) poles. Therefore, this non-gauge-
invariant part can be removed by adding a suitably chosen contact NNπγ
interaction term to the Lagrangian. The contribution of this extra contact
term can be written down explicitly, and gauge-invariance of the resulting
Born amplitude can be demonstrated by an explicit analytic calculation of
the Born diagrams. For the details of this calculation, we refer the Reader
to Ref. [3].

2.3. Contributions of baryon resonances

It can be achieved by a suitable choice of the interaction Lagrangians that
diagrams containing baryon resonances are individually gauge-invariant.
This means that problems similar to the case of Born contributions do not
appear. In our simplified model, we use only one term for each vertex con-
taining baryon resonances. Calculation of baryon resonance contributions is
straightforward, but lengthy. The calculation is carried out numerically.

3. Numerical results

3.1. Parameters of the model

We included 16 baryon resonances up to spin-5/2 and below 2 GeV in
our model. We determined the RNπ and RNρ coupling constants from
the width of the Nπ and Nρ decay modes of resonances. Since the Nγ
width is not very well known for many resonances, we determined the RNγ
coupling constants by fitting the pion photoproduction total cross section
data. During this fit, we varied the sign of the RNγ couplings, and also the
cutoff parameter Λ of the form factor Eq. (4).
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3.2. Dilepton spectra

The dilepton invariant mass spectra obtained from the model are shown
in Fig. 2 for various collision energies. Although only the

√
s = 1.9 GeV

energy is above the threshold of ρ-meson production, peaks appear at the
high dilepton mass end of the spectrum for two lower collision energies too.
This is because — due to the wide spectral function of the ρ — low mass
ρ mesons appear with large probability in sub-threshold collisions.
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Fig. 2. Dilepton invariant mass spectra from the reaction π− + p → n+ e+ + e−

for various collision energies.
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Fig. 3. Contributions of the dominant channels to the dilepton invariant mass
spectrum of the reaction π− + p→ n+ e+ + e− at

√
s = 1.9 GeV energy.
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Figure 3 shows the dominant contributions to the dilepton spectrum at
the
√
s = 1.9 GeV collision energy. These are the Born contribution and the

N(1680) and N(1520) resonance contributions. Interference terms of these
contributions are also important, some of them are negative.

4. Outlook

The presented model is a first step towards an EFT description of the
considered process. It contains several simplifications: vector mesons other
than ρ are absent from the applied VMD model, some possible terms from
interaction Lagrangians with baryon resonances are excluded, the model
has not been tested on differential cross sections of e.g. pion photoproduc-
tion, etc.

We point out one problem related to the application of the model in
transport codes for heavy ion collisions. We have seen that interference
terms of diagrams with different baryon resonances can give important con-
tributions to the cross section. In transport models, however, baryon res-
onances are propagated explicitly, therefore such interference terms cannot
be implemented in a straightforward way.

The author thanks for the support by the Hungarian OTKA fund T101438.
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