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We present the recent KLOE measurement of the dipion cross section,
directly derived from the bin-by-bin ratio of e+e− → ππγ to e+e− → µµγ
cross sections. The hadronic-loop contribution to the muon anomaly that
has been obtained confirms our previous measurements, and the discrep-
ancy between the experimental value of aµ and the Standard Model (SM).
With the µµγ sample studied for the dipion cross section, we have obtained
a preliminary exclusion plot for the U -boson in the Dark Force sector, in the
mass range of 600–1000 MeV that is presented together with the excluded
region from the analysis of the Dalitz decays, φ→ ηe+e−.
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1. Introduction

Measurements of the muon magnetic anomaly at the Brookhaven Labo-
ratory have reached a fractional accuracy of 0.54×10−6, aµ = (11 659 208.0±
6.3) × 10−10 [1]. The result differs from the Standard Model prediction by
3.2–3.6 standard deviations [2–5]. The main source of uncertainty on the
SM value of aµ is the leading hadronic vacuum polarization term, ∆h, loaµ.
It is obtained from a dispersion integral [6] over the “bare” cross section
σ0(e+e− → hadrons(γ)) that is derived from the physical cross section, in-
clusive of final state radiation, removing vacuum polarization (VP) and con-
tributions due to additional photon emission in the initial state. The leading
order hadronic contribution is ∼ 690×10−10 and the e+e− → π+π−(γ) pro-
cess measured by KLOE contributes to 75% of the value and 40% of the
uncertainty. The KLOE experiment at the DAΦNE φ-factory in Frascati
was the first to exploit Initial State Radiation (ISR) processes for the pre-
cision measurement of the hadronic cross section below 1 GeV. In 2005 and
2008, KLOE published two measurements of the e+e− → ππγ cross section,
with the ISR photon at small angle [7, 8]. An independent measurement with
the photon emitted at large angle, to reach the dipion production threshold
at s = 0.1 GeV2, was published in year 2011 [9]. The three measurements of
σ(e+e− → π+π−) cover the interval [0.1 < M2

ππ < 0.95] GeV2, with consis-
tent results and a combined fractional uncertainty of about 1%. This paper
reports on a more recent analysis of KLOE data, which directly derives the
pion form factor from the bin-by-bin ratio of e+e− → ππγ to e+e− → µµγ
cross sections [10].

2. Measurement of σ(e+e− → π+π−)

The differential ISR cross section for the e+e− → π+π−γ final state is
related to the dipion cross section σππ ≡ σ(e+e− → π+π−γ)

s
dσ(π+π−γ)

dsπ

∣∣∣∣
ISR

= σππ(sπ)H(sπ, s) , (1)

where the radiator function H is computed from QED with complete NLO
corrections [11]. Equation (1) is also valid for the dimuon final state with
the same radiator function H. We can, therefore, determine σππ from the
ratio of the e+e− → π+π−γ and e+e− → µ+µ−γ differential cross sections

σ0
(
π+π−, s′

)
=
dσ(π+π−γ, ISR)/ds′

dσ(µ+µ−γ, ISR)/ds′
× σ0

(
e+e− → µ+µ−, s′

)
. (2)

Final state photon emission for both, the π+π−γ, and µ+µ−γ channels
slightly modifies Eq. (2), and it has been considered in our analysis [12],
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where only events with photon emitted at small angle are used, as discussed
in Refs. [7, 8], a choice that results in a large enhancement of ISR with re-
spect to the FSR contribution. The ratio method has several advantages:
(i) the H function does not appear in Eq. (2). Therefore, the measure-
ment of σππ is not affected by the related systematic uncertainty of 0.5%;
(ii) using the same data sample for the π+π−γ and µ+µ−γ events, there is
no need for luminosity measurements; (iii) vacuum polarization corrections
and most other radiative corrections cancel in the ratio; (iv) using the same
fiducial volume, acceptance corrections to the π+π−γ and µ+µ−γ spectra
almost cancel resulting in a small systematic uncertainty. The pion form
factor and ∆ππaµ have been obtained using the ππγ differential cross sec-
tion of Ref. [8] and the precision measurement of dσµµγ/dsµ, discussed in
the following section.

2.1. The e+e− → µ+µ−γ(γ) cross section

The analysis is based on an event selection that requires: (i) reconstruc-
tion of at least two tracks of opposite sign, with the origin at the interac-
tion region (IP) and polar angle 50◦ < θ < 130◦. The momenta satisfy
p⊥ > 160 MeV or |pz| > 90 MeV, to ensure good reconstruction and effi-
ciency; (ii) polar angle θµµ of the dimuon system (pµµ = p++p−) satisfying
| cos θµµ| > cos(15◦); (iii) computed mass for the two observed particles, as
obtained from kinematical constraints assuming ISR xxγ events, in the range
of 80 < mx < 115 MeV; (iv) PID estimator, L±, which uses time-of-flight
information and energy deposit of each charged particle in the calorimeter,
compatible with the muon hypothesis, at least for one track.

Residual e+e−γ, π+π−γ and π+π−π0 backgrounds are evaluated by fit-
ting the observed mx spectrum with a superposition of Monte Carlo simula-
tion (MC) distributions describing signal and π+π−γ, π+π−π0 backgrounds,
and a distribution obtained from data for the e+e−γ background. In the
ρ mass region, the fractional π+π−γ yield in the µµγ acceptance region
is about 15% of the sample. To improve the MC description of the low-
energy mx tail of π+π−γ events in the muon peak, we apply a data/MC
resolution correction, function of sµ, using a control sample of φ→ π+π−π0

events. Contributions from e+e− → e+e−µ+µ− and e+e− → e+e−π+π−

processes are evaluated using the Nextcalibur [13] and Ekhara [14] MC gener-
ators. Systematic errors in the background subtraction include: (i) errors on
the parameters from the fit procedure: these decrease monotonically from
0.7% to 0.1% with respect to sµ; (ii) the uncertainty on the data/MC res-
olution corrections: about 1% in the ρ mass region, smaller at higher sµ,
negligible at lower sµ values; (iii) the uncertainty on the e+e− → e+e−µ+µ−

process: about 0.4% at low sµ, rapidly falling to 0.1% for sµ > 0.5 GeV2.
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The correctness of the background estimate has been checked by two inde-
pendent methods. With the first, we perform a kinematic fit of the two-track
events assuming a µµγ state. The χ2 value obtained is taken as discriminant
variable, instead of mx, and used in the fitting procedure described above;
with the second, we improve the π–µ separation applying a quality cut on
the helix fit for both tracks. This cut reduces the dipion background in the
dimuon signal region by more than a factor of two. The background fractions
obtained for both cases are in good agreement with the standard procedure.
The differential µ+µ−γ cross section is obtained from the observed event
count Nobs and background estimate Nbkg

dσµµγ
dsµ

=
Nobs −Nbkg

∆sµ

1

ε(sµ) L
, (3)

where L is the integrated luminosity from Ref. [15] and ε(sµ) the selection
efficiency. Figure 1, right-top, shows the measured µ+µ−γ cross section com-
pared with the QED calculations to NLO, using the MC code Phokhara [11].
Figure 1, right-bottom, shows the ratio between the two differential cross
sections. The band indicates the systematic uncertainty, experimental and
theoretical.
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Fig. 1. Left: Vertical cross section of the KLOE detector, showing the small and
large angle regions where respectively photons and muons are accepted. Right-top:
Comparison of data and MC results for dσµµγ/dsµ. Right-bottom: Ratio of the
two spectra. The band shows systematic errors.



Precision Measurements of Hadronic Contributions to Muon Anomaly . . . 1089

3. The hadronic vacuum contribution to aµ

From the bin-by-bin ratio between our published [8] π+π−γ and the
µ+µ−γ differential cross sections, we obtain the bare cross section σ0ππ(γ)
(inclusive of FSR, with VP effects removed) which is used in the dispersion
integral for computing ∆ππaµ. Figure 2 shows the π+π−γ and µ+µ−γ event
spectra after background subtraction and data/MC corrections (left) and
the bare cross section σ0ππ(γ) (right). Systematic uncertainties on σ0ππ(γ) are
smaller than the individual uncertainty on σ(e+e− → ππγ) and σ(e+e− →
µµγ) due to correlation between the two measurements [12]. The dispersion
integral for ∆ππaµ gives ∆ππaµ = (385.1±1.1stat±2.6exp±0.8th)×10−10 in
the interval 0.35 < M2

ππ < 0.95 GeV2, that is consistent with our previous
measurements. This result, with comparable total experimental uncertainty
and a theoretical error reduced by about 70%, confirms the current discrep-
ancy between the SM prediction and the experimental value of aµ.
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Fig. 2. Square-invariant-mass distributions of π+π−γ (higher counts from
0–0.9 GeV2) and µ+µ−γ (lower counts from 0–0.9 GeV2) events after back-
ground subtraction and data/MC corrections (left); the bare cross section from
the π+π−γ/µ+µ−γ ratio (right).

4. Searches for the U-boson

Some models of physics beyond the SM predict the existence of light
neutral vector particles (called U -bosons) mediator of new gauge interac-
tions under which ordinary matter is uncharged [16]. Motivated by as-
trophysical arguments, their mass, MU , is expected to be of the order of
1 GeV or lighter [17, 18]. Coupling of SM particles with the U is possi-
ble via kinetic mixing between the U and the ordinary photon, regulated
by a dimensionless parameter ε, expected to be of the order of ε ∼ 10−3

or lower. High-luminosity e+e− colliders at the GeV scale have been rec-
ognized to be an ideal environment to search for the U -boson in the Dark
Force sector. These new particles can be observed as sharp resonances at
MU in the invariant mass distribution of charged lepton or pion pairs in
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reactions of the type e+e− → l+l−γ or V → P l+l−, where V (P ) stands
for any vector (pseudoscalar) meson, and l± can be muons, electrons or
charged pions. KLOE has searched for U -boson production in both modes,
using φ → ηe+e− events (a), and e+e− → µ+µ−γ events (b). As for re-
actions (a), the first paper has been published [19] in which the presence
of the η-meson was tagged using its π+π−π0 decays; the second paper has
been subsequently issued [20] in which also the 3π0 decay channel of the η
was used. In both cases, a sample corresponding to 1.7 fb−1 of data at the
φ peak was used; no evidence of the U -boson is found, and the exclusion
plot, in the interval 30 < MU < 400 MeV, has been obtained (Fig. 3). Re-
action (b) was studied on the sample used for the measurement of the ratio,
R = σ(e+e− → π+π−(γ))/σ(e+e− → µ+µ−(γ)), exploiting the precision
MC simulation of the QED process e+e− → µµγ (Fig. 1). The exclusion
plot is obtained using the CLS technique. The preliminary result shown in
Fig. 3 covers the mass region 600 < MU < 1000 MeV and is currently being
extended to 500 MeV.

Fig. 3. Preliminary KLOE-2 exclusion plot in theMU–ε2 plane (90% C.L.). Results
are shown for the φ→ ηe+e− analyses and for the e+e− → µ+µ−γ one. The results
from the APEX and MAMI-A1 experiments are also shown.
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