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In this contribution, we present few-nucleon calculations performed in
a three-dimensional framework. References are given to our treatment of
two- and three-nucleon bound states as well as for the transition operator
in the positive energy range. New results for the transition operator in the
negative energy range are shown. Different features of the standard partial
wave and three dimensional calculations are presented.
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1. Introduction

The fundamental equations that govern two- and three-particle bound
and scattering state calculations were formulated a long time ago [1]. Their
application to the two- and three-nucleon systems typically employs the
partial wave approach. The advent of powerful computing resources made
it possible to construct calculations using three-dimensional (3D) degrees of
freedom. Considering 3D momentum vectors together with spin and isospin
states is quite natural and incorporates all partial wave states. This gives
hope for more precise calculations with a wider spectrum of applications.
Our results obtained using this new method are in good agreement with
classical partial wave calculations.

In this paper, we give a brief description of the tools that were developed
in our group to handle the degrees of freedom of the two- and three-nucleon
systems. Section 2 introduces the problems that had to be overcome in order
to construct efficient numerical realizations. Section 3 introduces our meth-
ods of approaching the calculations. The final section contains a discussion
of the results.
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2. Complexity

All our calculations are constructed using non-relativistic quantum me-
chanics. Our final expressions can be, in a few steps, traced back to the
Schrödinger equation, which describes the evolution of the system state
| ψ(t)〉 with the Hamilton operator Ȟ

i~∂t | ψ(t)〉 = Ȟ | ψ(t)〉 . (1)

For scattering, our expressions can always be traced to the Lippmann–
Schwinger equation for the transition operator t

ť(E) = V̌ + V̌ Ǧ0(E + iε)ť(E) (2)

with V̌ being the potential operator, Ǧ0 being the free propagator, and
E being the energy.

An application of these simple equations to systems with two- and three-
nucleons leads to complicated analytical expressions. This is largely an effect
of the necessity to introduce additional constraints on the two and three
nucleon bound state, the potential and the transition operator [2–4]. These
constraints significantly limit the required computational resources and are
necessary if a practical numerical realization of the calculations is to be
constructed. The complexity arises from the spin and isospin structure of
the bound state and from the operator representation of the nuclear forces
present in the Hamiltonian. With the suitable choice of basis operators, it
is possible to arrive at a finite set of equations for scalar functions of the
momentum vectors only and thus to eliminate spin degrees of freedom. The
scalar functions play a role of expansion coefficients and contain the full
information about the few-nucleon state or about the transition operator
[2–4]. The scalar nature of the unknown functions is very important for a
construction of numerical solutions.

3. Tools

The complexity and the size of the numerical problems we faced led us
to a development of tools that make the process of generating the analyti-
cal expressions and their FORTRAN implementation automatic. Numerical
realizations require many thousands of lines of a FORTRAN code. Our tools
written in the Mathematica R© symbolic programming language are very ef-
ficient and reduce the probability of human error.

After introducing conditions from [2–4], equations (1) and (2) take the
form of large linear (eigen) equations. The implementation of linear oper-
ators involved in the calculations can be constructed from the automati-
cally generated codes. The dimension of the problem is typically very large
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(N ≈ 106). This is especially true for three-nucleon systems. In order to
reduce the dimension of the matrices, Krylov subspace methods are even-
tually used. However, essential iterations require supercomputer resources.
We use the Jülich supercomputer JUQUEEN from the Jülich Supercomput-
ing Centre (JSC) in Germany. The reduced problem (expressed in terms of,
for example, 40 by 40 matrices and 40 dimensional vectors) can be solved
using standard numerical methods.

4. Results

All calculations utilize a very general form of the two- and three-nucleon
potentials. Our framework can be used to test various nuclear force models
available in the literature. Our results for the deuteron, transition opera-
tor and three-nucleon bound state have been verified and published [2–4].
Like in the partial wave representation, the 3D treatment of the two-nucleon
transition operator must account for the pole, which appears at the nega-
tive two-nucleon energy corresponding to the deuteron binding energy. The
residue is constructed from the deuteron wave function given in the opera-
tor form. The essentially analytical expression is easily obtained using our
Mathematica R© routines. The residue result must match the transition op-
erator values, calculated for other negative energies. This is the case, as
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Fig. 1. One (i = 1) of the six scalar functions, ti(p′, p, x′;E) in the expansion
of the transition operator, for the two-nucleon isospin t = 0, as a function of
the two-nucleon internal energy E in the vicinity of the deuteron binding energy,
Ed ≈ −2.2 MeV. In this example, p′ = 0.26 fm−1, p = 0.11 fm−1, x′ = −0.41. The
crossing of the horizontal and vertical lines denotes the residue position (calculated
from the deuteron wave function) and matches nicely the dots obtained from the
Lippmann–Schwinger equation. A chiral NNLO potential from Epelbaum et al.
has been used.
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shown in Figs. 1 and 2. Our tools can also be applied to processes involving
electroweak probes, for example, in the description of deuteron electrodisin-
tegration [5].
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Fig. 2. The same as in Fig. 1, but for the fourth coefficient (i = 4).
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