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We derive the Polyakov-loop thermodynamic potential in the perturba-
tive approach to pure SU(3) Yang–Mills theory. The potential expressed in
terms of the Polyakov loop in the fundamental representation corresponds
to that of the strong-coupling expansion, of which the relevant coefficients
of the gluon energy distribution are specified by characters of the SU(3)
group. At high temperatures, the derived gluon potential exhibits the cor-
rect asymptotic behavior, whereas at low temperatures, it disfavors gluons
as appropriate dynamical degrees of freedom. In order to quantify the
Yang–Mills thermodynamics in a confined phase, we propose a hybrid ap-
proach which matches the effective gluon potential to the one of glueballs
constrained by the QCD trace anomaly in terms of a dilaton. We also dis-
cuss the interplay between the chromomagnetic and chromoelectric gluon
dynamics.
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1. Introduction

The structure of the QCD phase diagram and thermodynamics at finite
baryon density is of crucial importance in heavy-ion phenomenology. Due
to the sign problem in lattice calculations, a major approach to a finite
density QCD is based on effective Lagrangians possessing the same global
symmetries as the underlying QCD. The SU(Nc) Yang–Mills theory has a
global Z(Nc) symmetry which is dynamically broken at high temperature.
This is characterized by the Polyakov loop that plays a role of an order
parameter of the Z(Nc) symmetry [1]. Effective models for the Polyakov loop
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were suggested as a macroscopic approach to the pure gauge theory [2, 3].
Their thermodynamics is qualitatively in agreement with that obtained in
lattice gauge theories [4]. Alternative approaches are based on the quasi-
particle picture of thermal gluons [5]. When gluons propagating in a constant
gluon background are considered, the quasi-particle models naturally merge
with the Polyakov loops, that appear in the partition function, as characters
of the color gauge group [6–10].

In this contribution, we show that the SU(3) gluon thermodynamic po-
tential derived from the Yang–Mills Lagrangian is expressed in terms of the
Polyakov loops in the fundamental representation. We summarize its prop-
erties and argue that at hight temperatures, it exhibits the correct asymp-
totic behavior, whereas at low temperatures, it disfavors gluons [11]. We,
therefore, suggest a hybrid approach to Yang–Mills thermodynamics, which
combines the effective gluon potential with glueballs implemented as dilaton
fields.

We propose also an effective theory of SU(3) gluonic matter [12]. The
theory is constructed based on the center and scale symmetries and their
dynamical breaking, so that the interplay between color–electric and color–
magnetic gluons is included coherently. We suggest that the magnetic gluon
condensate changes its thermal behavior qualitatively above the critical tem-
perature, as a consequence of matching to the dimensionally-reduced mag-
netic theories.

2. Thermodynamics of hot gluons

We start from the partition function of the pure Yang–Mills theory

Z =

∫
DAµDCDC̄ exp

[
i

∫
d4xLYM

]
, (1)

with gluon Aµ and ghost C fields. Following [3, 13], we employ the back-
ground field method to evaluate the functional integral. The gluon field is
decomposed into the background Āµ and the quantum Ǎµ fields

Aµ = Āµ + gǍµ . (2)

The partition function is arranged as

lnZ = V

∫
d3p

(2π)3
ln det

(
1− L̂Ae

−|~p |/T
)

+ lnM(φ1, φ2) , (3)

where L̂A is the Polyakov loop matrix in the adjoint representation and the
two angular variables, φ1 and φ2, represent the rank of the SU(3) group.
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The M(φ1, φ2) is the Haar measure

M(φ1, φ2) =
8

9π2
sin2

(
φ1 − φ2

2

)
sin2

(
2φ1 + φ2

2

)
sin2

(
φ1 + 2φ2

2

)
(4)

for a fixed volume V , which is normalized such that

2π∫
0

2π∫
0

dφ1dφ2M(φ1, φ2) = 1 . (5)

The first term in Eq. (3) yields the gluon thermodynamic potential

Ωg = 2T

∫
d3p

(2π)3
tr ln

(
1− L̂A e

−Eg/T
)
, (6)

where Eg =
√
|~p |2 +M2

g is the quasi-gluon energy and the effective gluon
mass Mg is introduced from phenomenological reasons.

We define the gauge invariant quantities from the Polyakov loop matrix
in the fundamental representation L̂F, as

Φ = 1
3trL̂F , Φ̄ = 1

3trL̂†F . (7)

Performing the trace over colors and expressing it in terms of Φ and its
conjugate Φ̄, one arrives at

Ωg = 2T

∫
d3p

(2π)3
ln

(
1 +

8∑
n=1

Cn e
−nEg/T

)
, (8)

with the coefficients Cn

C8 = 1 ,

C1 = C7 = 1− 9Φ̄Φ ,

C2 = C6 = 1− 27Φ̄Φ+ 27
(
Φ̄3 + Φ3

)
,

C3 = C5 = −2 + 27Φ̄Φ− 81
(
Φ̄Φ
)2
,

C4 = 2
[
−1 + 9Φ̄Φ− 27

(
Φ̄3 + Φ3

)
+ 81

(
Φ̄Φ
)2]

. (9)

Thus, the gluon energy distribution is identified solely by the characters
of the fundamental and the conjugate representations of the SU(3) gauge
group.
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We introduce an effective thermodynamic potential in the large volume
limit from Eq. (3) as follows

Ω = Ωg +ΩΦ + c0 , (10)

where Ωg is given by Eq. (8) and the Haar measure part is found as

ΩΦ = −a0T ln
[
1− 6Φ̄Φ+ 4

(
Φ3 + Φ̄3

)
− 3

(
Φ̄Φ
)2]

. (11)

The potential (10) has, in general, three free parameters; a0, c0 and the
gluon mass Mg. They can be chosen e.g. to reproduce the equation of
state obtained in lattice gauge theories. It is straightforward to see that
the result of a non-interacting boson gas is recovered at asymptotically high
temperature. Indeed, taking Φ, Φ̄→ 1, one finds

Ωg
(
Φ = Φ̄ = 1

)
= 16T

∫
d3p

(2π)3
ln
(

1− e−Eg/T
)
. (12)

On the other hand, for a sufficiently largeMg/T , as expected near the phase
transition, one can approximate the potential as

Ωg '
T 2M2

g

π2

8∑
n=1

Cn
n
K2(nβMg) (13)

with the Bessel function K2(x). In the quasi-particle approach, the above
result can also be considered as a strong-coupling expansion, regarding the
relation Mg(T ) = g(T )T with an effective gauge coupling g(T ).

The effective action to the next-to-leading order of the strong coupling
expansion is obtained in terms of group characters as [10]

S
(SC)
eff = λ10S10 + λ20S20 + λ11S11 + λ21S21 (14)

with products of characters Spq, specified by two integers p and q counting
the numbers of fundamental and conjugate representations, and couplings
λpq being real functions of temperature. Making the character expansion of
Eq. (13), one readily finds the correspondence between Spq and Cn as

C1,7 = S10 , C2,6 = S21 , C3,5 = S11 , C4 = S20 . (15)

On the other hand, taking the leading contribution, exp[−Mg/T ] in the
expansion, the “minimal model” is deduced with

Ωg ' −F(T,Mg)Φ̄Φ , (16)

where the negative sign is required for a first-order transition [10]. The
function F can be extracted from Eq. (10) and the resulting potential is of
the form widely used in the PNJL model [14–17]. See also [18].
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3. A hybrid approach

Although the potential (10) describes quite well thermodynamics in de-
confined phase, it totally fails in the confined phase. In the confined phase,
〈Φ〉 = 0 is dynamically favored by the ground state, thus the C1 = 1 term
remains as the main contribution. Consequently,

Ωg
(
Φ = Φ̄ = 0

)
' 2T

∫
d3p

(2π)3
ln
(

1 + e−Eg/T
)
. (17)

One clearly sees that Ωg does not posses the correct sign in front of
exp[−Eg/T ], expected from the Bose–Einstein statistics. This implies that
the entropy and the energy densities are negative. On the other hand, if one
uses the approximated form (16), the pressure vanishes at any temperature
below Tc. Obviously, this is an unphysical behavior since there exist color-
singlet states, i.e. glueballs, contributing to thermodynamics and they must
generate a non-vanishing pressure.

This aspect is in a striking contrast to the quark sector. The thermo-
dynamic potential for quarks and anti-quarks with Nf flavors is obtained
as [14, 19]

Ωq+q̄ = −2NfT

∫
d3p

(2π)3
ln
[
1 +Nc

(
Φ+ Φ̄e−E

+/T
)
e−E

+/T + e−3E+/T
]

+ (µ→ −µ) , (18)

with E± = Eq ∓ µ being the energy of a quark or anti-quark. In the
limit, Φ, Φ̄ → 0, the one- and two-quark states are suppressed and only
the three-quark (“baryonic”) states, ∼ exp(−3E(±)/T ), survives. This, on
a qualitative level, is similar to confinement properties in QCD thermody-
namics [16]. One should, however, keep in mind that such quark models
yield only colored quarks being statistically suppressed at low temperatures.
On the other hand, unphysical thermodynamics below Tc described by the
gluon sector (10) apparently indicates that gluons are physically forbidden.
Interestingly, this property is not spoiled by the presence of quarks. Indeed,
in this case and at T < Tc, the thermodynamic potential is approximated as

Ωg +Ωq+q̄ '
T 2

π2

[
M2
gK2

(
Mg

T

)
− 2Nf

3
M2
qK2

(
3Mq

T

)]
. (19)

Assuming that glueballs and nucleons are made from two weakly-interacting
massive gluons and three massive quarks respectively and putting empirical
numbers, Mglueball = 1.7 GeV and Mnucleon = 0.94 GeV, one finds that
Mg = 0.85 GeV and Mq = 0.31 GeV. Substituting these mass values in
Eq. (19), one still gets the negative entropy density at any temperature and
for either Nf = 2 or Nf = 3, as found in the pure Yang–Mills theory.
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The unphysical equation of state (EoS) in confined phase can be avoided,
when gluon degrees of freedom are replaced with glueballs. A glueball is
introduced as a dilaton field χ representing the gluon composite 〈AµνAµν〉,
which is responsible for the QCD trace anomaly [20]. The Lagrangian is of
the standard form

Lχ =
1

2
∂µχ∂

µχ− Vχ , Vχ =
B

4

(
χ

χ0

)4
[

ln

(
χ

χ0

)4

− 1

]
, (20)

with the bag constant B and a dimensionful quantity χ0 to be fixed from
the vacuum energy density and the glueball mass. One readily finds the
thermodynamic potential of the glueballs as

Ω = Ωχ + Vχ +
B

4
, Ωχ = T

∫
d3p

(2π)3
ln
(

1− e−Eχ/T
)
,

Eχ =
√
|~p |2 +M2

χ , M2
χ =

∂2Vχ
∂χ2

, (21)

where a constant B/4 is added so that Ω = 0 at zero temperature.
We propose the following hybrid approach which accounts for gluons and

glueballs degrees of freedom by combining Eqs. (10) and (21)

Ω = Θ(Tc − T )Ω(χ) +Θ(T − Tc)Ω(Φ) . (22)

For a given Mg, the model parameters, a0 and c0, are fixed by requiring
that Ω(Φ) yields a first-order phase transition at Tc = 270 MeV and that
Ω(χ) and Ω(Φ) match at Tc. The resulting EoS follows general trends seen
in lattice data [11]. The model can be improved further by introducing a
thermal gluon mass, Mg(T ) ∼ g(T )T , as carried out e.g. in [8].

4. Magnetic confinement

Asymptotic properties of non-Abelian gauge theories at finite tempera-
ture are successfully captured in the quasi-particle description, which can be
consistently calculated in the leading-order perturbation theory [21]. How-
ever, a naive perturbative treatment in the weak coupling g is spoiled since
the magnetic screening mass is dynamically generated as an ultra-soft scale
g2T [13, 22]. The magnetic sector remains non-perturbative in the high tem-
perature phase, and consequently, the spatial string tension is non-vanishing
for all temperatures [23, 24], indicating certain confining properties.

This residual interaction brings apparent deviations in equations of state
(EoS) from their Stefan–Boltzmann limit at high temperature. In particular,
the interaction measure I(T ) is the best observable to examine dynamical
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breaking of scale invariance of the Yang–Mills (YM) Lagrangian. In lattice
simulations of pure SU(3) YM theory the I(T )/T 2T 2

c , with the deconfine-
ment critical temperature Tc, is nearly constant in the range Tc < T < 5Tc.
This observation strongly suggests non-trivial dynamical effects [4, 25–30].
Beyond this temperature range, the lattice data follow the results from the
Hard Thermal Loop (HTL) resummed perturbation theory. Thus, a non-
perturbative part in the lattice data is extracted by subtracting the HTL con-
tribution [25]. The resultant non-perturbative part in I(T )/T 2T 2

c is mono-
tonically decreasing, whereas the HTL result is monotonically increasing
with T . A plateau that arises in intermediate temperatures in I(T )/T 2T 2

c

can be therefore understood as resulting from the summation of those two
contributions.

In [12], we formulate an effective theory of SU(3) gluonic matter, which
accounts for two dynamically different contributions, the chromomagnetic
and chromoelectric gluons. In general, the dilaton couples also to the
Polyakov loop which is the order parameter of confinement-deconfinement
phase transition and belongs to the color-electric sector. Thus, the dilaton
captures the thermodynamic properties around the critical point Tc, which
are related with both, the color-electric and color-magnetic gluons.

Thermal behavior of the magnetic gluon condensate at high temperature
is found, using the three-dimensional YM theories [31–34], as [35]

〈H〉 = cH
(
g2(T )T

)4 (23)

with
cH =

6

π
c2
σc

2
m . (24)

The constants cσ and cm appear in σs and in the magnetic gluon mass as√
σs(T ) = cσg

2(T )T , mg(T ) = cmg
2(T )T . (25)

For SU(3) YM theory cσ = 0.566 [4] and cm = 0.491 [36].
The potential that mixes the dilaton field and the Polyakov loop should

be manifestly invariant under Z(Nc) and scale transformation. For Nc = 3,
its most general form is as the following [37]

Vmix = χ4
(
G1Φ̄Φ+G2

(
Φ̄3 + Φ3

)
+G3

(
Φ̄Φ
)2

+ . . .
)
, (26)

with unknown coefficients Gi. In the following, we take only the first term.
At high temperature, due to the dimensional reduction, the theory in four

dimensions should match the three-dimensional YM theory. We postulate
the following matching condition

〈χ〉
χ0

=

(
〈H〉
H0

)1/4

. (27)
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This transmutation from 〈χ〉 ∼ const. to 〈H〉1/4 ∼ g2T leads to an addi-
tional contribution to the interaction measure

δI = −B 〈H〉
H0

+

(
2b0 +

b1
b0

1

ln (T/Λσ)

)
〈H〉

g4(T )H0
. (28)

The interaction measure normalized by T 2T 2
c is monotonically decreasing

even at high temperature when no matching to the 3-dim YM is made. The
magnetic contribution generates a T 2 dependence. The sum of those two
contributions forms a plateau-like behavior in I/T 2T 2

c at moderate temper-
ature, T/Tc ∼ 2–4. This property appears due to the residual chromomag-
netic interaction encoded in the dilaton, χ4 ∼ H. The resulting behavior of
I/T 2T 2

c with temperature qualitatively agrees with the latest high-precision
lattice data [25]. We note that a smooth switching from the dilaton to
the magnetic condensate must happen dynamically, so that thermodynamic
quantities, such as the specific heat, do not experience any irregular behavior
above Tc.

5. Summary

We have derived the thermodynamic potential in the SU(3) Yang–Mills
theory in the presence of a uniform gluon background field. The potential
accounts for quantum statistics and reproduces an ideal gas limit at high
temperature. Within the character expansion, the one-to-one correspon-
dence to the effective action in the strong-coupling expansion is obtained.
Different effective potentials used so far appear as limiting cases of our result.

The phenomenological consequence is that gluons are disfavored as ap-
propriate degrees of freedom in confined phase. This property is in remark-
able contrast to the description of “confinement” within a class of chiral
models with Polyakov loops [14, 17], where colored quarks are activated at
any temperature.

We have also presented an effective theory implementing the major global
symmetries, the center and scale symmetries, and their dynamical breaking.
This naturally allows a mixing between the Polyakov loop and the dila-
ton field. Consequently, the magnetic confinement is effectively embedded
and results in deviations of the EoS from their Stefan–Boltzmann limit at
high temperature. Through a matching to the 3-dimensional YM theory, the
gluon condensate increases with temperature in deconfined phase. Contrary,
in the conventional treatment of the dilaton condensate, there is a weak ther-
mal behavior of the composite gluon in a wide range of temperature. This
suggests, that at some temperature above Tc, the gluon condensate exhibits
a distinct behavior on T . In the present theory, this temperature is roughly
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estimated as ∼ 2.4Tc, compatible with ∼ 2Tc extracted from the spatial
string tension [35]. Applying this idea to the interaction measure, the role
of the magnetic gluon turns out to be alternative to the HTL contribution.

C.S. acknowledges partial support by the Hessian LOEWE initiative
through the Helmholtz International Center for FAIR (HIC for FAIR).
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