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The strong coupling limit of staggered lattice QCD has been studied
for decades, both via Monte Carlo and mean field. In this model, the finite
density sign problem is mild and the full phase diagram can be studied,
even in the chiral limit. However, in the strong coupling limit the lattice
is maximally coarse. Here, we propose a method to go beyond the strong
coupling limit with first results and discuss the consequences on the QCD
phase diagram in the µ–T plane, in particular the existence of chiral crit-
ical end point which is sought in heavy ion collisions. We explain how to
construct an effective theory for non-zero lattice coupling, valid to O(β),
and present Monte Carlo results incorporating these corrections.

DOI:10.5506/APhysPolBSupp.7.127
PACS numbers: 12.38.Gc, 13.75.Cs, 21.10.Dr, 21.65.–f

1. Introduction

It is one of the main goals of lattice QCD at finite temperature and
density to map the phase boundary and the order of the transition as a
function of the quark chemical potential µ and the temperature T . However,
due to the sign problem of fermion determinant based Hybrid Monte Carlo,
little progress has been made in this field. All the methods at hand are
limited to small µ/T [1]. Here, we propose to study the phase diagram from
a strong coupling perspective, where simulations are feasible also at finite
chemical potential. The basic idea of strong coupling lattice QCD is to
perform the link integrals analytically before integrating out the Grassmann
variables, hence no fermion determinant arises. The sign problem does not
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pose a problem in practice, because at high temperatures or densities the sign
problem vanishes and is still mild across the phase boundary. We adopt the
staggered fermion discretization, where a reformulation in “dual variables”
can be obtained ([2, 3], see also [4] for the dual variable approach in another
model with chemical potential). The full QCD partition function is given by

ZQCD =

∫
dψdψ̄dUeSG+SF , SG =

β

2Nc

∑
P

tr
[
UP + U †P

]
, (1)

SF = amq

∑
x

ψ̄xψx
1

2

∑
x,ν

ην(x)γδν0

×
[
ψ̄xe

atµδν0Uν(x)ψx+ν̂ − ψ̄x+ν̂e−atµδν0U †ν (x)ψx

]
(2)

with mq the quark mass and µ = 1
3µB the quark chemical potential. The

anisotropy in the Dirac couplings γ is introduced to vary the temperature
continuously. At strong coupling, the ratio of spatial and temporal lattice
spacing is a

at
' γ2(1 + O (1/Nτ )) [5]. The action in the strong coupling

limit is simply given by the fermionic action, as the lattice gauge coupling
β = 2Nc/g

2 vanishes in the strong coupling limit g → ∞. Since the link
integration factorizes in the absence of the gauge action, the gauge links
Uν(x) can be integrated out analytically [6]. After performing the Grass-
mann integration, the final partition function, introduced in [2], is obtained
by an analytic rewriting in terms of hadronic degrees of freedom (mesons
and baryons)

ZSC =
∑
{k,n,`}

∏
b

(Nc − kb)!
Nc!kb!

∏
x

Nc!

nx!
(2amq)

nx
∏
`

w(`, µ) . (3)

The mesons are represented by monomers nx ∈ {0, . . . Nc} on sites x, and
dimers kb ∈ {0, . . . Nc} (with b = (x, µ) the bonds), whereas the baryons
are represented by oriented self-avoiding loops `. The weight w(`, µ) =(∏

b∈`Nc!
)−1

σ(`)eNcNτ r`aτµ for a baryonic loop ` and its sign σ(`) ∈ {+1,−1}
depends on the loop geometry. The essential constraint on the admissible
configuration {k, n, `} is the Grassmann constraint

nx +
∑

µ̂=±0̂,···±d̂

(
kµ̂(x) +

Nc

2
|`µ̂(x)|

)
= Nc . (4)

Due to this constraint, mesonic degrees of freedom (monomers and dimers)
cannot occupy baryonic sites. This system has been studied both via mean
field [7–10] and Monte Carlo methods [5, 11, 13]. In recent years, Monte
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Carlo simulations of this system have undergone a revival due to the appli-
cability of the Worm algorithm [5, 12, 13]. The idea is to violate the Grass-
mann constraint in order to sample the monomer two-point function G(x, y)
from which the chiral susceptibility is computed. These techniques have
been applied to obtain all lattice data presented in this paper. In Fig. 1, we
show the (µ, T ) phase diagram in the strong coupling limit and for mq = 0,
where

〈
ψ̄ψ
〉
is an exact order parameter for spontaneous chiral symmetry

breaking. It is qualitatively similar to the expected phase diagram of QCD
in the chiral limit: the transition is of second order at aµ = 0, up to the
tricritical point at (aµtcp, aTtcp), and turns to first order. At finite quark
mass, the second order line turns into a crossover, the tricritical point into
a second order critical end point. At low temperatures, in contrast to QCD,
the chiral transition coincides with the nuclear transition. This is because
above the critical chemical potential a baryonic crystal forms, which restores
chiral symmetry. This saturation effect is a lattice artifact.
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Fig. 1. SC phase diagram from Worm algorithm with identifications: aT = γ2

Nτ
,

aµ = γ2aτµ. Note that the re-entrance at low temperatures vanishes in continuous
time (Nτ →∞).

Since strong coupling lattice QCD can be thought of as a one-parameter
deformation of continuum QCD, an important question is how both phase
diagrams are connected. Due to the sign problem, only the plane at µ = 0
and the plane at β = 0 is known. The QCD phase diagram in the (µ, T ) plane
in the continuum limit is largely unknown. If the tricritical point persists
in the continuum limit, this is strong evidence for the existence of a chiral
critical end point in full QCD at physical quark mass. In order to go beyond
the strong coupling limit, we derive a partition function valid at O (β), from
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which we compute the slope of the chiral transition temperature. There are
two questions we want to address: What is the slope of the tricritical line
with respect to β, and do the chiral and nuclear transition split as expected?
Two of various possible scenarios are sketched in Fig. 2.

Fig. 2. Two scenarios of the extension of the chiral transition to finite β. It is
expected that the chiral transition and the nuclear transition will split. The first
and second order regions are separated by tricritial lines. Of special interest is
whether the tricritical point at strong coupling will move to smaller (left) or larger
(right) values of µc as a function of β.

2. Corrections to the strong coupling limit

To go beyond the strong coupling limit, a systematic expansion of the
QCD partition function in β is needed. Here, we derive the effective action
valid to the leading order O (β). The SC partition function including the
gauge part can be written in terms of a fermionic path integral

ZQCD =

∫
dχdχ̄dUeSG+SF =

∫
dχdχ̄ZF

〈
eSG
〉
ZF

, (5)

where ZF =
∫
dUe−SF is the fermionic partiton function, which is related

to the strong coupling partition function via ZSC =
∫
dχdχ̄ZF. The gauge

action can then be expressed as an expectation value which we linearize to
obtain the O (β) contribution

〈
eSG
〉
ZF
' 1 + 〈SG〉U = 1 +

β

2Nc

∑
P

〈
tr
[
UP + U †P

]〉
ZF

. (6)
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Evaluating the expectation value of the elementary plaquette tr[UP ] in the
strong coupling ensemble, we need to compute the link integrals with an
additional gauge link coming from the plaquette. Before Grassmann inte-
gration, the plaquette is given by P = JijJjkJklJli with the link integrals at
the edge of an elementary plaquette [14–16]

Jij =

Nc∑
k=1

(Nc − k)!

Nc!(k − 1)!
(MχMϕ)k−1χ̄jϕi

+
1

Nc!(Nc − 1)!
εii1i2εjj1j2ϕ̄i1ϕ̄i2χj1χj2 −

1

3
B̄χBφφ̄jχi (7)

with M and B representing the mesons and baryons. From these link in-
tegrals, we can compute the weight for inserting a plaquette or a Polyakov
loop into the strong coupling configuration. At the corners of the plaquette,
the Grassmann variables φ, χ are bound into baryons and mesons to fulfill
a modified Grassmann constraint: here, the degrees of freedom add up to
Nc + 1. For Nc = 3, there are 19 diagrams contributing to the plaquette P
[16], one of them given in Fig. 3. We can summarize the generalized link
weights w and site weights v as follows

vM = (Nc − 1) , vB = Nc! , wDk =
(Nc − k)!

Nc!k!
k ,

wB0 =
1

Nc!
, wB1 =

1

Nc!(Nc − 1)!
, wB2 =

(Nc − 1)!

Nc!
, (8)

where at vB the external leg is baryonic, whereas at vM the external leg is
mesonic, B1 is an oriented link where one quark flux is replaced by a gauge
flux and B2 the link state of a baryon dressed with oppositely oriented gauge
and quark flux. We can insert a new set of variables, the plaquette occu-
pation numbers qp ∈ {0, 1} (and derived from it a bond-plaquette number
qb ∈ {0, 1}), to include a Metropolis update allowing to sample the partition
function

Z =
∑

{k,n,q,`}

∏
x

wx
∏
b

wb
∏
`

w`
∏
P

wP ,

wx =
Nc!

nx!
(2amq)

nxvi(x) , wb =
(Nc − kb)!
Nc!(kb−qb)!

,

w` =
∏
`

wBi(`)σ(`)e3Nτ r`aτµ , wP =

(
β

2Nc

)−2qp
(9)

at finite β. Qualitatively new aspects of the O (β) contributions are (1) that
mesons and baryons are now allowed to interact and (2) that baryons become
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extended objects, in contrast to their pointlike nature in the strong coupling
limit. There is no strict decomposition of the lattice into mesonic and bary-
onic sites due to the plaquettes. The O (β) corrections allow to measure
the zero-th order of gauge observables (average plaquette, Polyakov loop),
and the first order of fermionic observables (slope of the chiral suceptibility,
baryon density).

O (β)
≡

Gauge Flux

Quark Flux
confined in Baryon

Quark Flux
confined in Meson

Fig. 3. Illustration of reweighting from the strong coupling ensemble: insertion of
two parallel dimers produces one of the 19 plaquette diagrams. The dimer and
flux variables adjacent to the plaquette are composed of quark flux and gauge
flux: black/blue lines represent mesonic content, gray/red lines represent baryonic
content. The baryon becomes an extended object.

3. Gauge observables

We obtain gauge observables via reweighting from the strong coupling
ensemble, instead of sampling at finite β. This is because the average pla-
quette, given by

〈P 〉 =
2

V d(d− 1)

∂

∂β
log(Z) =

1

β
〈nP 〉 , nP =

2

V d(d− 1)

∑
P

qP (10)

is very noisy for small β due to the division of two small numbers. In Fig. 4
we show a detailed comparison of the strong coupling algorithm (making
use of both the worm algorithm and reweighting in the plaquette number,
abbreviated SC-algorithm) with conventional hybrid Monte Carlo (HMC).
Both the Polyakov loop and the average plaquette are consistent in the
whole parameter space in quark mass and temperature. In Fig. 5 the vol-
ume dependence of the Polyakov loop and average plaquette is shown, both
are sensitive to the chiral transition. This cusp-like behaviour should not
be interpreted as deconfinement, but is an imprint of the chiral transition.
We have reported this finding for U(3) gauge theory in [17], and similar be-
haviour is also found in the opposite limit of non-confining models, discussed
in [18].
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Fig. 4. Comparison of gauge observables measured both with SC-algorithm and
Hybrid Monte Carlo. Perfect agreement is found for the Polyakov loop (left). The
average plaquette (right) is very noisy in HMC, but in good agreement with the
results from the SC-algorithm.
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Fig. 5. Volume dependence of gauge observables: both the Polyakov loop (left) and
the average plaquette (right) show an L-dependence at the transition region, close
to aTc = 1.402(1).

4. Phase diagram as a function of β

For fermionic observables, such as the chiral susceptibility or the baryon
density, we can extract the leading order corrections (the slope with respect
to β). This allows us to compute the gauge corrections to the strong coupling
phase diagram. We now address the chiral susceptibility, which in terms of
the monomer number NM is given by
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χ =
1

(2amq)2L3Nt

(〈
N2

M

〉
− 〈NM〉2 − 〈NM〉

)
. (11)

In the following, we consider the chiral limit, where 〈NM〉 = 0 due to the
finite system size. The worm algorithm samples the 2-point correlation func-
tion in the 2-monomer sector, its integral is

χ=
1

V

∑
x1,x2

G(x1, x2) ≡
〈(
ψ̄ψ
)2〉

. (12)

The leading order Taylor coefficient of χ is given by the derivative of the
chiral susceptibility w.r.t. β.

χ(β) = χ0 + cχβ +O
(
β2
)
,

cχ =
∂

∂β

〈(
ψ̄ψ
)2〉

= N3
sNt

(〈(
ψ̄ψ
)2
P
〉
−
〈(
ψ̄ψ
)2 〈P 〉〉) . (13)

At finite temperature, we need in fact to measure both spatial and tem-
poral plaquette expectation values as well as their joint expectation value
with (ψ̄ψ)2. This results in two Taylor coefficients, cs, ct. However, cs is
largely suppressed with temperature, just as the spatial plaquette itself (see
Fig. 5), so that we did not need to consider any anistropy in the gauge
coupling βs/βt at the phase boundary. We determine the chiral transition
temperature via critical scaling with 3d O(2) critical exponents γ, ν

χL(T, β)/Lγ/ν = A+BtL1/ν , t =
T − Tc(β = 0)

Tc(β = 0)
(14)

that is the chiral susceptibility collapses on a universal scaling function when
rescaled in this way, which is almost linear in the scaling window with non-
universal coefficients A ' 1.001(1) and B ' −0.982(1) for SU(3) at zero
density. Our strategy is to determine the shift in aTc induced by a finite
value of β. For this to be the case, the Taylor coefficient also has to obey
critical scaling. We indeed find that cχ can well be fitted by a linear function
in t

cχ
χ
' c1 + c2L

1/ν + c3t , (15)

with c2 = −0.397(2) for SU(3) at µ = 0. The coefficient c3 drops out since
the term is of higer order in β. The slope of the critical temperature is

s ≡ d

dβ
aTc(β)

∣∣∣∣
β=0

= −aTc
A

B
c2 . (16)
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For SU(3), where aTc = 1.402(1) at µ = 0, we obtain s = −0.446(7), as
shown in Fig. 6, so we indeed find that the transition temperature drops.
The slope can be compared to the mean field result of Miura et al. [19],
who get s ≈ 0.4, which is quite compatible
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Fig. 6. The transition temperature from critical scaling of the chiral susceptibility.
Left: for β = 0, aTc = 1.402(1). Right: for β = 0.03, the transition temperature
shifts to aTc = 1.389(1).

The drop in aTc is expected since the lattice spacing a(β) shrinks as β
is increased. Also, in the strong coupling limit, the ratio Tc(µ=0)

3µc(T=0) ≈
1.403
1.71 =

0.82 is much too large compared to the continuum result (in the chiral limit)
Tc
3µc
≈ 154MeV

0.93GeV = 0.165. Hence it is expected that the phase boundary at
small µ decreases more drastically with β than at large µ. Due to the
mild sign problem of the dimer representation, our method to determine the
slope of aTc can be readily extended to finite density. Numerical results for
the phase boundary as a function of β will be presented in a forthcoming
publication.

5. Conclusion

We have presented a method to compute gauge corrections to the QCD
phase diagram at strong coupling. The correct average plaquette and
Polyakov loop are reproduced at β = 0 and can be measured at high pre-
cision. This allows us to obtain the leading order gauge corrections to the
chiral susceptibilty via reweighting. Via a second order scaling analysis we
were able to get the slope of the chiral transition temperature d

dβaTc, which
is in good agreement with the expected value.
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