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The N = 4 super Yang–Mills plasma is studied in the regime of weak
coupling. Collective excitations and collisional processes are discussed and
compared to those of QCD plasma. The two systems are concluded to be
very similar to each other with the differences mostly reflecting different
numbers of degrees of freedom.
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1. Introduction

A great interest in the N = 4 super Yang–Mills theory, which is confor-
mally invariant not only at the classical but at the quantum level as well, was
stimulated by a discovery of the AdS/CFT duality of the five-dimensional
gravity in the anti-de Sitter geometry and the conformal field theories [1].
The duality offered a unique tool to study strongly coupled field theories.
Since the gravitational constant and the coupling constant of dual confor-
mal field theory are inversely proportional to each other, some problems of
strongly coupled field theories can be solved via weakly coupled gravity. In
this way, some intriguing features of strongly coupled systems driven by the
N = 4 super Yang–Mills dynamics were revealed, see the reviews [2, 3].
However, one asks how properties of the N = 4 super Yang–Mills plasma
(SYMP) are related to those of quark–gluon plasma (QGP) studied exper-
imentally in relativistic heavy-ion collisions. Some properties of strongly
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coupled SYMP have been confronted with those of QGP, see e.g. [4], but, in
general, such a comparison is a difficult problem. Instead some comparative
analyses have been done in the domain of weak coupling where perturbative
methods are applicable [5–10].

We undertook a task of systematic comparison of supersymmetric pertur-
bative plasmas to their non-supersymmetric counterparts. We started with
the N = 1 SUSY QED, analyzing first collective excitations of ultrarela-
tivistic plasma which, in general, is out of equilibrium [11] and then, in the
subsequent paper [12] we discussed collisional characteristics. Our findings
show that the SUSY QED and QED plasmas are surprisingly similar to each
other. Further, we have studied the N = 4 super Yang–Mills plasma, ana-
lyzing again collective excitations and collisional characteristics [13]. Here
we summarize the study.

Throughout the paper, we use the natural system of units with c = ~ =
kB = 1; our choice of the metric tensor is (+−−−).

2. N = 4 super Yang–Mills theory

The gauge group is SU(Nc) and every field belongs to its adjoint rep-
resentation. There are gauge bosons (gluons) described by the vector field
Aaµ with a, b, c, . . . = 1, 2, . . . N2

c − 1. There are four Majorana fermions
represented by the Weyl spinors combined in the Dirac bispinors Ψi with
i = 1, 2, 3, 4. Finally, there are six real scalar fields which are assembled in
the multiplet Φ = (X1, Y1, X2, Y2, X3, Y3), where Xp and Yp are scalars and
pseudoscalars. The Lagrangian can be written as [14]
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where Fµνa = ∂µAνa−∂νA
µ
a + gfabcAµbA

ν
c and the covariant derivatives equal

(D/Ψi)
a = (∂/ δab + gfabcAc/ )Ψ bi and (DµΦ)a = Dµ

abΦb = (∂µδab + gfabcAµc )Φb;
g is the coupling constant; fabc are the structure constants of SU(Nc) group;
the 4×4 matrices αp, βp satisfy the commutation relations {αp, αq} = −2δpq,
{βp, βq} = −2δpq, [αp, βq] = 0. Their explicit form is given in [14].

3. Basic plasma characteristics

As in QGP, there are several conserved charges in SYMP. Comparing the
two systems, we assume that all average charges and the associated chem-
ical potentials vanish. Then, the temperature (T ) is the only dimensional
parameter which characterizes the equilibrium plasma. Taking into account
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the right numbers of bosonic and fermionic degrees of freedom in SYMP and
QGP, the energy densities of equilibrium non-interacting plasmas equal

ε =
π2

60

(
30(N2

c − 1)

4(N2
c − 1) + 7NfNc

)
T 4 , (2)

where the upper expression is for SYMP and the lower one for QGP with
Nf light quark flavors. For Nc = Nf = 3, the energy density of SYMP is
approximately 2.5 times bigger than that of QGP at the same temperature.
The same holds for the pressure p which, obviously, equals ε/3.

The Debye masses in SYMP and QGP equal

m2
D =

g2

6

(
12Nc

2Nc +Nf

)
T 2 . (3)

For Nc = Nf = 3, the ratio of Debye masses squared is 2.4 at the same value
of gT . The Debye mass determines not only the screening length rD = 1/mD

but it also gives the plasma frequency ωp = mD/
√

3 which is the minimal
frequency of longitudinal and transverse plasma oscillations.

Another important quantity characterizing the equilibrium plasma is the
so-called plasma parameter λ which equals the inverse number of particles
in the sphere of radius of the screening length. When λ is decreasing, the
behavior of plasma is more and more collective while inter-particle collisions
are less and less important. For Nc = Nf = 3, we have

λ ≡ 1
4
3πr

3
Dn
≈
(

0.257

0.042

)
g3 . (4)

The dynamics of QGP is thus more collective. The difference of energy
densities of SYMP and of QGP merely reflects the difference in numbers of
degrees of freedom. For mD and λ it also matters that fermions in QGP and
SYMP belong to different representations of the SU(Nc) group.

4. Dispersion equations and self-energies

Knowing the field equations of motion, one writes down the gluon, fermion
and scalar dispersion equations as

det
[
k2gµν − kµkν −Πµν(k)

]
= 0 , (5)

det [k/ −Σ(k)] = 0 , k2 + P (k) = 0 , (6)

where color and other indices are dropped, Πµν(k), Σ(k) and P (k) are the
retarded self energies and k ≡ (ω,k) is the four-momentum. As seen, the
whole dynamical information is contained in the self-energies.
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To compute the self-energies, which enter the dispersion equations, the
plasma is assumed to be homogeneous, locally colorless but the momentum
distribution is, in general, different from equilibrium one. Therefore, the
Keldysh–Schwinger formalism, which allows one to describe both equilib-
rium and non-equilibrium many-body systems, is adopted. We also apply
the Hard Loop Approach, see the review [15], which was generalized to
anisotropic systems in [16].

Computing the one-loop contributions and performing the Hard-Loop
Approximation, one finds the retarded gluon polarization tensor as

Πµν
ab (k) = g2Ncδab

∫
d3p

(2π)3

f(p)

Ep

k2pµpν − (kµpν + pµkν − gµν(k · p))(k · p)
(k · p+ i0+)2

,

(7)
where

f(p) ≡ 2ng(p) + 8nf(p) + 6ns(p) (8)

is the effective distribution function of plasma constituents. The coefficients
in front of the distributions functions ng(p), nf(p), ns(p) equal the numbers
of degrees of freedom (except colors) of, respectively, gauge bosons, fermions
and scalars. This is a manifestation of supersymmetry. Another effect of
the supersymmetry is vanishing of the tensor (7) in the vacuum limit when
f(p) = 0. The polarization tensor (7) is symmetric (Πµν(k) = Πνµ(k)) and
transverse (kµΠ

µν(k) = 0) and thus it is gauge independent.
The fermion and scalar self-energies computed at the one-loop level in

the Hard-Loop Approximation are

Σij
ab(k) =

g2

2
Ncδabδ

ij

∫
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(2π)3
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Ep

p/

k · p+ i0+
, (9)

PABab (k) = −2g2Ncδabδ
AB

∫
d3p

(2π)3

f(p)

Ep
, (10)

and, as the polarization tensor (7), they depend on the function (8).

5. Effective action

The Hard Loop Approach can be formulated in an elegant and compact
way by introducing the effective action which was first derived for equilib-
rium plasmas in [17–19] and later on generalized to anisotropic systems in
[20, 21].

Since the self-energy of a given field is the second functional derivative
of the action with respect to the field, one writes

L(Aaµ)
2 (x) = 1

2

∫
d4y Aaµ(x)Πµν

ab (x− y)Abν(y) , (11)
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where Πµν
ab is given by formula (7). The subscript 2 indicates that the action

generates only two-point functions. To get n-point functions the action needs
to be modified to a gauge invariant form: the ordinary derivative should be
replaced by the covariant one. Repeating the calculations described in [21],
one finds the Hard Loop effective actions as

LAHL = g2Nc

∫
d3p

(2π)3

f(p)

Ep
F aµν(x)

(
pνpρ

(p ·D)2

)
ab

F b µρ (x) , (12)

LΨHL = g2Nc

∫
d3p

(2π)3

f(p)

Ep
Ψ̄ai (x)

(
p · γ
p ·D

)
ab
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LΦHL = −2g2Nc

∫
d3p

(2π)3

f(p)

Ep
ΦaA(x)ΦaA(x) , (14)

where f(p) is, as previously, the distribution function (8).
The actions (12)–(14) are obtained from the self-energies but the rea-

soning can be turned around. As argued in [18, 19], the actions of gauge
bosons (12), fermions (13), and scalars (14) are of unique gauge invariant
form. Therefore, the structures of Hard-Loop self-energies are unique. Con-
sequently, the self-energies can be inferred from the known QED and QCD
results with some help of supersymmetry arguments.

6. Collective modes

When the self-energies are substituted into the dispersion equations, col-
lective modes are found as solutions of the equations.

The structure of polarization tensor (7) is such as of gluon polarization
tensor in QCD plasma. It also has analogical form as in both usual and
supersymmetric QED plasma. Therefore, the spectrum of collective excita-
tions of gauge bosons is in all cases the same. In equilibrium plasma, we
have the longitudinal and transverse plasmons. When the plasma is out of
equilibrium, there is a whole variety of possible collective excitations. In par-
ticular, there are unstable modes, see e.g. review [22], which exponentially
grow in time and strongly influence the system’s dynamics.

The form of Majorana fermion self-energy (9) happens to be the same
as the quark self-energy in QCD plasma. It also coincides with the electron
self-energy in both non-supersymmetric and supersymmetric QED plasma.
Therefore, we have identical spectrum of excitations of fermions in all these
systems. In equilibrium plasma, there are two modes of opposite helicity
over chirality ratio. In non-equilibrium plasma, the spectrum of fermion
collective excitations changes but no unstable modes have been found even
for an extremely anisotropic momentum distribution [23, 24].
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The scalar self-energy (10) is independent of momentum, it is negative
and real. Therefore, one writes P (k) = −m2

eff , where meff is the effective
mass. Then, the dispersion equation is solved when k2 = m2

eff .

7. Collisional characteristics

Transport coefficients of weakly coupled QGP, which include baryon and
strangeness diffusion, electric charge and heat conductivity, shear and bulk
viscosity and color conductivity, have been studied in detail, see [25–28] and
references therein. The shear viscosity of SYMP has been computed in [6]
and the bulk viscosity is identically zero because of exact conformality. Other
transport coefficients of SYMP have not been studied but they are expected
to be qualitatively similar to those of QGP.

Let us consider, for example, the shear viscosity η. Since the tempera-
ture is the only dimensional parameter, which characterizes the equilibrium
plasma of massless constituents, η must be proportional to T 3. The domi-
nant contributions to η of QGP come from the binary collisions driven by a
one-gluon exchange. The analysis presented in [25] shows that at the lead-
ing order η ∼ T 3/g4 ln g−1. The factor 1/ ln g−1 appears due to the infrared
singularity of the Coulomb-like interaction.

One expects the same parametric form of η and other transport coeffi-
cients in the case of SYMP and QGP because, similarly to QGP, there are
the Coulomb-like binary interactions for every constituent of SYMP. The
analysis [6] indeed proves that the shear viscosity coefficients of QGP and
SYMP differ only by numerical factors which mostly reflect different num-
bers of degrees of freedom in the two plasmas. The viscosity is strongly
dominated by the Coulomb-like interactions, and it does not much matter
that the sets of elementary processes in the two plasmas are different.

We considered [12] two transport characteristics of the N = 1 QED
plasma which are not so constrained by dimensional arguments and seemed
to strongly depend on elementary process under consideration. Specifically,
we computed the collisional energy loss and momentum broadening of a
particle traversing the equilibrium plasma. The dimensional argument does
not work here because the two quantities depend not only on the plasma
temperature but on the energy of test particle as well. We computed the
energy loss and momentum broadening due to the processes which, like the
Compton scattering on selectrons, are independent of momentum transfer.
Such processes are qualitatively different from the Coulomb-like interac-
tions dominated by small momentum transfers. We managed to obtain the
exact formulas of the energy loss and momentum broadening due to the
momentum-independent scattering. In the limit of high energy of test par-
ticle, which is important in the context of jet suppression phenomenology,
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the energy loss and momentum broadening appeared to be very similar (at
the leading order) to those driven by the Coulomb-like interactions.

The result can be understood as follows. One estimates the energy loss
dE
dx as 〈∆E〉/λ, where 〈∆E〉 is the typical change of particle’s energy in
a single collision and λ is the particle’s mean free path given as λ−1 = ρ σ
with ρ ∼ T 3 being the density of scatterers and σ denoting the cross section.
For the differential cross section, which is independent of momentum trans-
fer, the total cross section is σ ∼ e4/s. When a highly energetic particle
with energy E scatters on massless plasma particle, s ∼ ET and conse-
quently σ ∼ e4/(ET ). The inverse mean free path is thus estimated as
λ−1 ∼ e4T 2/E. When the scattering process is independent of momen-
tum transfer, 〈∆E〉 is of the order of E and we finally find −dE

dx ∼ e4T 2.
In the case of Coulomb interaction, we have 〈∆E〉 ∼ −e2T , λ−1 = e2T
which provide the same estimate of the energy loss. The energy transfer in
a single collision is thus much smaller in the Coulomb interaction, than in
the momentum independent scattering but the cross section is bigger in the
same proportion. Consequently, the two interactions corresponding to very
different differential cross sections lead to very similar energy losses.

We expect an analogous situation in SYMP. There are various elementary
processes but the energy loss and momentum broadening of highly energetic
particles do not much differ from those in QGP.

8. Conclusions

QCD is obviously rather different than N = 4 super Yang–Mills theory.
Nevertheless QGP and SYMP are surprisingly similar in the weak coupling
regime (at the leading order). The form of gluon collective excitations is
identical and the same is true for the fermion (quark) modes. The scalar
modes in SYMP are as of massive relativistic particle. The sets of elementary
processes are different in QGP and SYMP but the transport coefficients,
which are dominated by the Coulomb-like interactions, are quite similar.
The energy loss and momentum broadening of a highly energetic test particle
are also rather similar in the two plasma systems. The differences mostly
come from different numbers of degrees of freedom in both plasmas which
need to be taken into account for a quantitative comparison.

This work was partially supported by the Polish National Science Centre
under Grant No. 2011/03/B/ST2/00110.
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