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We investigate pion and sigma meson correlations in hot quark matter
within a modified NJL model. Special emphasis is on the transformation
of mesonic bound states to resonances (Mott dissociation) when due to the
partial chiral symmetry restoration with increasing temperature the thresh-
old of quark–antiquark continuum states drops below the meson mass at
the corresponding Mott temperature. The description is based on evalu-
ating the polarization functions for quark–antiquark (meson) correlations
as a function of the temperature, and the results can be represented by
introducing modulus and phase of the complex propagator functions for
the mesonic states. We study the effect of modelling confinement by in-
troducing a low-momentum cutoff in loop integrals. We make the ansatz
that this cutoff is identified with the dynamically generated quark mass
gap and find an increase of the continuum threshold which makes the oth-
erwise unbound sigma meson a bound state in the vacuum. We discuss the
in-medium behaviour of the mesonic phase shifts including the Mott effect
and find accordance with the Levinson theorem.

DOI:10.5506/APhysPolBSupp.7.215
PACS numbers: 12.39.Ki, 11.30.Rd, 12.38.Mh, 25.75.Nq

∗ Progress report presented by A. Dubinin at the XXXI Max Born Symposium and
HIC for FAIR Workshop “Three Days of Critical Behaviour in Hot and Dense QCD”,
Wrocław, Poland, June 14–16, 2013.

(215)



216 A. Dubinin, D. Blaschke, Yu.L. Kalinovsky

1. Introduction
Experimental data from existing (RHIC Brookhaven, CERN-SPS) and

planned (NICA@JINR Dubna and CBM@FAIR Darmstadt) particle accel-
erators explore the characteristics of the hadron to quark matter phase tran-
sition. This phase transition is expected to play a crucial role also in the
astrophysics of compact stars, binary compact star mergers and supernova
explosions. The experimental diagnostics and adequate theoretical descrip-
tion of this phenomenon are problems of high actuality. The theoretical
description of the phase transition region should be based on a field theoret-
ical description of the effective interactions in quark matter. It is essential
for a modern description of quark matter with hadronic bound states to im-
plement the features of chiral symmetry breaking, deconfinement and colour
superconductivity.

The Nambu–Jona-Lasinio type model is a field theoretical quark model
with current–current type interactions adjusted for the description of low
energy meson and diquark physics [1–6]. Within this model, the mecha-
nism of spontaneous breaking of chiral symmetry (SBCS) is realized in a
simple and transparent way, and the low energy theorems are fulfilled. It is
straightforwardly generalized to finite temperatures and chemical potentials
within the Matsubara formalism which provides results for the mean field
thermodynamics of quark matter that implements chiral symmetry restora-
tion. The coupling of the chiral quark dynamics to the Polyakov-loop allows
to suppress the occurrence of free quarks at too low temperatures, before
the chiral symmetry restoration transition.

However, the ordinary NJL model as well as its Polyakov-loop counter-
part both fail to prevent low-lying hadron states (like the σ or ρ meson) from
decaying to free quarks, which makes a realistic description of hadrons on
their mass shell questionable. In order to cure this problem, we introduce an
infrared (IR) cutoff to quark momentum integrals since in confined matter
the long wavelength (low momentum) modes of quark fields shall be absent
since quarks are enclosed in hadrons only. For NJL models with IR cutoff
see, e.g., Refs. [7–9]. In such a picture deconfinement occurs when the IR
cutoff goes to zero. As a natural assumption, based on the close relationship
of confinement and chiral symmetry breaking, we will identify the IR cutoff
with the dynamical quark mass.

In the present contribution, we want to go beyond the mean field level
and focus on the description of low-lying hadronic bound states such as the
pion and sigma meson chiral partner system, and its dissociation due to the
Mott effect at finite temperature. A consistent thermodynamic description
of correlations in many-particle systems can be achieved with the Beth–
Uhlenbeck approach to the virial expansion [10] and its relativistic formula-
tion [11], based on scattering phase shifts. The Beth–Uhlenbeck approach
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has been generalized to address the Mott dissociation of bound states (see,
e.g., [12]) including the case of meson dissociation within the NJL model
[13, 14] and its Polyakov-loop generalization [15–18]

In our contribution to these Proceedings, we will discuss the effect of
the IR cutoff on the quark and meson mass spectrum at finite temperature
and show that the sigma meson can be obtained as a bound state at low
temperatures. We will evaluate the mesonic scattering phase shifts as basic
inputs for the generalized Beth–Uhlenbeck equation of state and put special
emphasis on the Mott dissociation effect which is obtained in accordance
with the Levinson theorem. We use here the NJL model and reserve the
straightforward coupling to the Polyakov loop to a subsequent study.

2. Mass gap and correlations in a NJL model with IR cutoff

We consider the two-flavour NJL model for quark matter at finite tem-
perature T and chemical potential µ with the partition function

Z(T, µ) =

∫
Dq̄Dq exp

{ β∫
0

dτ

∫
V

d3x

{
q̄
(
iγµ∂µ −m0 − γ0µ

)
q

+GS

[
(q̄q)2 + (q̄iγ5~τq)

2
]}}

. (1)

Here q and q̄ denote the quark spinor fields with antiperiodic boundary
conditions in the imaginary time interval 0 ≤ τ ≤ β = 1/T , GS is the
coupling constant, ~τ is the vector of Pauli matrices in flavour space, and
m0 = diag(m0

u,m
0
d) is the diagonal matrix of current quark masses.

The thermodynamic potential Ω(T, µ) = −T lnZ(T, µ)/V in Gaussian
approximation is a sum of mean field (MF) and fluctuation part

Ω(T, µ) = ΩMF(T, µ) +
∑
M

Ω
(2)
M (T, µ) +O

[
φ3M
]
,

with the mean field part given by

ΩMF(T, µ) =
σ2MF

4GS
+ 2NcNf

∫
d3p

(2π)3
[
Ep − T ln f+(Ep)− T ln f−(Ep)

]
,

where f∓(E) = [eβ(E∓µ) + 1]−1 is the distribution function for fermions
(antifermions) with the dispersion relation Ep =

√
p2 +m2.
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The minimization of mean field part of the thermodynamic potential,
∂ΩMF/∂σMF = 0, leads to the gap equation (m = m0 + σMF)

m = m0 + 4GSNfNc

Λ∫
pmin

dp p2

2π2
m

Ep

[
1− f+(Ep)− f−(Ep)

]
. (2)

Temperature dependent solutions of Eq. (2) are shown in Fig. 1 for different
choices of the IR cutoff pmin which mimicks confinement.
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Fig. 1. Quark mass versus temperature for different pmin = const and pmin = m(T ).

The fluctuations contribution to the Gaussian order of the thermody-
namic potential is by definition given by

Ω
(2)
M (T, µ) =

∑
M

NM

2

T

V
Tr lnD−1M (ωn, q) , (3)

where M = π, σ, Nπ = 3, Nσ = 1 and the inverse meson propagator
D−1M (ωn, q) = 1/GS −ΠM (ωn, q) is defined via the polarization loop

ΠM (ωn, q) = −2NfNc

∑
s,s′=±1

∫
d3p

(2π)3

1− f+(sEp)− f−
(
−s′Ek

)
ωn + s′Ek − sEp

χ±− ,

χ±− = 1− ss′ pk ∓m
2

EpEk
. (4)

The expressions for the polarization loop contain an integral over 3-momen-
tum p and the abbreviation k = p − q. For correlations at rest, q = 0,
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we have p = k and obtain the homogeneous Bethe–Salpeter equations for
pion and sigma meson bound states (Pπ = p2 +m2, Pσ = p2) from the pole
approximation to the analytically continued (iωn → z) meson propagator
DM (s) = (s−M2

M )−1, s = ω2 − q2, ω = Re(z)

1 + 4GSNcNf

Λ∫
pmin

dp p2

2π2
1

Ep

PM
M2
M − 4E2

p

[
1− f+(Ep)− f−(Ep)

]
= 0 . (5)

The results for the temperature dependence of the meson mass spectrum
and the continuum threshold are shown in Fig. 2 for both cases, the ordinary
and the modified NJL model with pmin = 0 and pmin = m(T ), respectively.
Comparing both cases, one observes that in the latter the sigma meson
is a bound state for temperatures below the Mott temperature, implicitly
defined as MM (TMott,M ) =

√
sthr(TMott,M ) , while in the former case the

sigma meson lies in the scattering continuum at all temperatures. For the
thermodynamics of mesonic correlations in quark matter, we are interested
not only in the bound state spectrum of the model, but also in the role
scattering state continuum. This can be consistently discussed with the
phase shifts φM parametrizing the complex meson propagator function

DM (z = ω + iε, q) = |DM (z, q)| exp [iφM (s)] . (6)
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Fig. 2. Temperature dependence of the masses for the pion (dash-dotted line),
sigma meson (solid line) and the continuum threshold (dashed line) for pmin = 0

(left panel) and for pmin = m(T ) (right panel).

Since the meson polarization function (4) can be decomposed as ΠM (z, q) =
Π(0) + aM (s)Π(2)(z, q) with aπ = s and aσ = s − 4m2, an analytic decom-
position of the phase shift φM = φM,R+φcont can be made [14, 16, 18]. The
continuum phase shift is state independent

φcont(s) = − arctan
[
ImΠ(2)(ω + iε, q)/ReΠ(2)(ω + iε, q)

]
, (7)
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and the resonant phase shift corresponds to a complex pole solution z =
zM = ωM + iΓM/2 of the Bethe–Salpeter equation for small width ΓM just
above TMott,M , which goes over to the bound state pole solution for ΓM → 0

φM,R(s) = πΘ
(
s−M2

M

)
, T < TMott,M . (8)

The behaviour of these phase shifts is illustrated in Fig. 3 for the pion
(left panels) and sigma (right panels) meson channels. These phase shifts
obviously obey Levinson’s theorem

∞∫
0

ds
dφM
ds

= 0 =

sthr∫
0

ds
dφM
ds︸ ︷︷ ︸

nMπ

+

∞∫
sthr

ds
dφM
ds︸ ︷︷ ︸

φM (∞)−φM (sthr)

, (9)

where nM = 1 is the number of bound states below the threshold which for
the modified NJL model with IR cutoff is sthr(T ) = 2

√
p2min +m2(T ).
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Fig. 3. Resonance, continuum and total phase shifts at T = 0 versus squared center-
of-mass energy s for the pion (left panels) and the sigma meson (right panels) with
IR cutoff pmin = m(T ) (dash-dotted lines) and without it (solid lines).
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In Fig. 4 we show the phase shifts for selected temperatures around and
above the Mott temperature. The Levinson theorem holds also in this case
and thus the behaviour of the phase shift at threshold can be used as an
indicator for the Mott transition, i.e., for the transition of a bound state to
the scattering state continuum.
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Fig. 4. Pion and sigma meson phase shifts for temperatures 200, 250 and 600 MeV
with IR cutoff pmin = m(T ) (right panels) and without it (left panels).

3. Results and discussion

We have investigated mesonic correlations in hot quark matter within a
modified NJL model that incorporates aspects of confinement by introduc-
ing a low-momentum cutoff in loop integrals. It has the effect to increase
the continuum threshold so that both chiral partner states, pion and sigma
meson are bound states at low temperatures. Alternatively, this feature
is obtained in nonlocal chiral quark models [19, 20]. Special emphasis in
this study was on the Mott dissociation of these states, when due to the
partial chiral symmetry restoration with increasing temperature the thresh-
old of quark–antiquark continuum states drops below the meson mass and
mesonic correlations change their character from bound states to resonances
at the corresponding Mott temperature.
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To this end, the gap equation for the dynamical quark mass and the
polarization functions for quark–antiquark correlations have been solved as
a function of the temperature. Hereby we have made the ansatz that the
infrared cutoff is identified with the dynamically generated quark mass gap
thus relating this confinement aspect with that of chiral symmetry breaking.

The pion and sigma meson correlations are represented by phase shifts
which are decomposed into a resonant and a continuum part which entail-
ing such a decomposition also for the generalized Beth–Uhlenbeck equation
of state. The continuum contribution is negative and channel independent.
The form of the resonant phase shifts for the chiral partner states changes
as the temperature increases from step function in energy that jumps from
zero to π at the meson mass (for mesons at rest) to smoothened step with a
width Γ above the Mott temperature. There, both phases become degener-
ate and thus resemble an aspect of chiral symmetry. At the Mott tempera-
ture for a given mesonic channel, when the bound state vanishes and instead
a resonance in the continuum appears, the energy derivative of the resonant
phase shift changes from a delta-function to a Lorentzian (Breit–Wigner)
type and the phase shift itself jumps at the continuum threshold from π to
zero in accordance with the Levinson theorem.
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