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HADRONIC CORRELATORS AND SYMMETRIES∗
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The nature of the QCD chiral transition depends crucially on the sym-
metries being restored at the transition temperature. These symmetries
are reflected in the properties of correlations of meson operators as well
as in the eigenmodes of the Dirac operator of the light quarks. The pa-
per gives an account of our current results for these quantities which are
based on lattice simulations with two light and a strange quark in improved
discretization schemes.
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1. Introduction

The Lagrangian of Quantum Chromodynamics (QCD), the theory of the
strong interactions, for NF massless flavours is globally symmetric under
SUL(NF) × SUR(NF) × UA(1) × UV(1) transformations. This symmetry is
explicitely broken by non-vanishing quark masses. However, at the physical
spectrum with two light (u, d) and the strange (s) quark, mu<∼md � ms �
mproton, the effects of the explicit breaking are small, especially in the light
quark sector, and can be treated as perturbation. It is well established that
in the vacuum the SUL(NF)× SUR(NF) symmetry is spontaneously broken
to SUV(NF), signalled by a non-vanishing value for the chiral condensate
〈qq̄〉 and leading to the appearance of pseudoscalar Goldstone mesons, the
pions, as well as to the lifting of degeneracies between chiral partners, e.g.
the JPC = 1−− ρ and the 1++ a1 meson. Moreover, the UA(1) symmetry is
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explicitely broken by quantum effects, the so-called triangle anomaly, leading
to a mass of the pseudoscalar flavour singlet, predominantly the η′ meson,
much larger than those of the other pseudoscalars, the pions and kaons.

At high temperatures, the chiral SUL(NF) × SUR(NF) symmetry is re-
stored. In the chiral, massless quark limit the restoration is signalled by
the vanishing of the corresponding order parameter, the chiral condensate
at the critical temperature Tc. Moreover, as is argued from universality the
nature of the transition depends crucially on the number of flavours: for
NF = 3 massless quarks the transition is of first order [1], while for NF = 2
the order may depend on the effect of the UA(1) anomaly at the transi-
tion temperature [1, 2]. In the latter case, if the UA(1) breaking is still
effective, the transition is expected to be of second order with O(4) critical
behaviour. Relatedly, at non-vanishing quark masses the nature of the tran-
sition depends crucially on the quark mass values. Lattice QCD analyses
with 2 + 1 staggered quarks at physical masses have strongly indicated that
the transition is a crossover [3]. Studies at a variety of light quark masses
down to values even smaller than realized in nature exhibit compatibility of
the quark mass dependence of the light quark chiral condensate with O(4)
scaling up to and including the physical point [4], an observation that has
been corroborated in simulations within a different discretization scheme at
smaller lattice spacings [5].

The realization of chiral symmetries is reflected in the spectrum of had-
ronic excitations. As the SUL(NF) × SUR(NF) symmetry gets restored at
high temperature, the vector and the axialvector spectral distributions are
expected to become identical in the chiral limit. For two light quarks, the
scalar–pseudoscalar sector is more complicated: the pion is to become de-
generate with the scalar isoscalar f0(σ), whereas the degeneracy with the
scalar isovector a0(δ) depends on the effective restoration of the UA(1) [6].
In the following section, we therefore discuss current results for meson cor-
relators at temperatures in the vicinity of Tc and above. In section 3 this is
supplemented by preliminary results from an analysis of the eigenmodes of
the Dirac operator which are also sensitive to chiral symmetry, through the
Banks–Casher relation, and to the effective restoration of UA(1).

2. Hadron screening masses

At finite temperature, the extent of the thermal system in the temporal
direction is limited by the inverse temperature. Therefore, many lattice
studies of hadronic excitations investigate correlation functions of hadronic
operators H in one of the spatial directions

GH(z) =
∑
x,y,t

〈H(x, y, z, t)H(0)〉 −−−−→
z large

exp (−mscr
H z) + p.b.c. (1)
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which decay exponentially with the screening mass mscr
H of the lowest con-

tribution to the correlator at large separation. In the heatbath, where full
Lorentz symmetry is not realized anymore, the screening masses generically
are different from the masses obtained from temporal correlations. Yet,
the spatial correlations originate from the same spectral density σ and are
equally sensitive to the restoration of symmetries on the operator level

G(z) =

+∞∫
−∞

dp

2π
eipz

+∞∫
−∞

dp0
σ(p0, p)

p0
. (2)

In the free limit, at infinite temperature, for all meson channels and massless
quarks the spatial correlation functions are known to decay with screening
masses of 2πT at z → ∞, see e.g. [7]. First order perturbative corrections
have been computed to be positive and the same for all channels [8].

In the following, we present results obtained from two data sets, both
from simulations with 2 + 1 dynamical staggered quarks. Data set A is
based on configurations with temporal extents Nτ = 4, 6 and 8 generated
within the p4 discretization scheme at light quark masses which correspond
to a Goldstone pion mass value of 220 MeV. The second data set B utilizes
configurations with Nτ = 8 generated with the HISQ action at light quark
masses which lead to mπ = 160 MeV at zero temperature. In both cases,
the strange quark mass was kept at its physical value and the aspect ratios
Nσ/Nτ have always been 4. While data set B so far covers temperatures in
the vicinity of Tc, set A extends up to T ' 800 MeV. Note that at finite
lattice spacing the critical temperature depends on the discretization, on Nτ

and on the quark masses. In the following plots for set A, the results have
been shifted in T such that the “common” Tc has a value of 196 MeV which
is the critical temperature for Nτ = 6. For set B, Tc amounts to 163 MeV.
The results of set A are published [9], those of set B are preliminary.

In Fig. 1 (left) we show our results for the screening mass in the transverse
vector channel, normalized to the free theory value of 2πT . The comparison
of the values obtained at different temporal extents Nτ , corresponding to
different lattice spacings at a given temperature, a = 1/(NτT ), reveals the
presence of discretization effects. At high temperatures, the Nτ = 6 and
8 data already overshoot 1 such that the continuum extrapolation clearly
will be above the free theory number, in qualitative accord with [8]. On
the right-hand side, the ratio of transverse axialvector to vector is shown.
This ratio is much less affected by discretization effects. It is seen that right
at the transition temperature, determined from the behaviour of the chiral
condensate, the ratio is compatible with 1, i.e. the chiral partners become
degenerate at this temperature. The same ratio from set B is shown in
Fig. 2 with better resolution at low temperatures. The left part depicts
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results in the light ūd flavour combination where the data indicate chiral
symmetry restoration within the error bars. The right plot gives the ratio
in the strange (s̄s) sector, showing the sensitivity of the ratio, and of chiral
symmetry restoration, to the quark mass.
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Fig. 1. Vector screening masses (left) and the ratio of axialvector to vector masses
(right) as a function of temperature from data set A.
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Fig. 2. Ratio of axialvector to vector screening mass for the ūd (left) and the s̄s
flavour combination (right), from data set B. The vertical line denotes Tc at Nτ = 8

for the HISQ discretization.

In Fig. 3 we turn to the pseudoscalar channel. The left part exhibits
the temperature dependence of the corresponding screening mass, showing
a strong rise above Tc. On the right-hand side, we plot its ratio to the
vector screening mass. Although in both plots finite lattice spacing effects
are visible, it remains clear that pseudoscalar and vector do not become
degenerate in the investigated temperature range.
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Fig. 3. Pseudoscalar screening masses in units of r0 = 0.469 fm (left) and their
ratio to the vector results (right), from data set A.

In Fig. 4 results for pseudoscalar and scalar isovector from set B are
presented. The left plot summarizes the pseudoscalar screening masses for
three different flavour combinations, the pion, the kaon and a hypothetical
s̄s pseudoscalar. The figure highlights a slight temperature dependence of
the masses below Tc which is remarkably well described by an exponential
behaviour as a+ b exp(T/c). In the right part, the temperature dependence
of the scalar isovector is compared with the pion. It is clearly seen that
the scalar screening mass drops in the vicinity of Tc but does not become
degenerate with the pion at the transition
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Fig. 4. Pseudoscalar screening masses for three different flavour combinations (left);
scalar and pseudoscalar for the ūd channel; both from data set B.

The (non-)degeneracy of scalar and pseudoscalar is further depicted in
Fig. 5. Here, we plot their ratio, at low temperatures below 175 MeV from
set B and for temperatures above Tc only from set A. At present, this ratio
deviates from 1 at temperatures up to about 1.25 Tc. Although the com-
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parison of the ūd with the ūs combination does not indicate a strong quark
mass dependence it must be pointed out that the subtle chiral extrapolation
of the ratio could not yet been carried out. Taken at face value the present
results however do favour that the UA(1) is not restored effectively at the
chiral transition temperature.
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Fig. 5. Scalar to pseudoscalar screening mass ratios from set B (left) and A (right).

3. Low eigenmodes of the Dirac operator

The question of whether a0 and π become degenerate can also be attacked
through an analysis of the density ρ(λ) of low lying eigenvalues λ of the Dirac
matrix. Their relation to the integrated π and a0 correlators, the generalized
susceptibilities χπ,a0 , is given by the difference

χπ − χa0 = lim
ml→0

+∞∫
0

dλ
4m2

l

(λ2 +m2
l )

2
ρ(λ) (3)

in the chiral limit for the light quark masses ml. The vanishing of this
difference signals effective UA(1) restoration. A sufficient condition for this
to happen would be that ρ(λ) develops a gap around λ = 0.

Because of the importance of this issue for the nature of the chiral QCD
transition, investigations of the Dirac spectrum have seen renewed interest
recently. For two flavour QCD with dynamical overlap fermions, albeit on
small lattices and with configurations restricted to the Q = 0 sector (where
Q is the topological charge), it was reported that UA(1) may be restored
near the chiral transition [10]. With the HISQ action on larger and finer
lattices, it was reported that UA(1) may be broken even at 1.5 Tc [11].
Recent simulations with dynamical domain wall fermions [12] also suggest
that UA(1) is broken in and above the chiral cross-over region.
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Here, we use the overlap operator as a tool to analyze the same 323×8
gauge field configurations generated with the HISQ action which have been
used in Sec. 2. The advantages of the overlap operator are its chiral proper-
ties, the possible presence of exact zero modes and the applicability of the
index theorem Q = n+ − n−, relating the topological charge to the number
n± of zero modes with chirality ±1, all valid even at non-vanishing lattice
spacing.

The distribution of the lowest eigenvalues per configuration is shown in
Fig. 6 for two temperatures, just above Tc and for 1.5 Tc. Even at 1.5 Tc there
is a considerable number of exact zero modes, which, in addition, distinguish
themselves by their chiralities of ±1, shown as the grey/red contribution to
the lowest eigenvalue bin. This indicates that also above Tc there is quite
a number of topologically non-trivial configurations which would lift the a0
mass. The figure also shows that the density of small eigenvalues decreases
with rising temperature. However, even at the high temperature there are
near-zero modes remaining, with a smeared δ(λ) like distribution. It remains
to be studied whether the weight of this distribution scales with the quark
mass as mα

l , α > 1, in which case the observed distribution accommodates
a vanishing chiral condensate and UA(1) breaking at the same time.
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Fig. 6. Distribution of the 100 (at T = 1.04 Tc, left) and 50 (at T = 1.5 Tc, right)
lowest eigenvalues computed on every configuration. The grey/red contribution to
the lowest eigenvalue bin stems from exact zero-modes. The vertical line denotes
the minimal value of the largest eigenvalue obtained on every configuration; be-
yond this value the distribution cannot be trusted because of the truncation in the
number of eigenvalues computed.

4. Conclusions

Lattice simulations of QCD with two light and a strange quark based
on two different improved discretization schemes have given evidence that
at the transition temperature where the chiral condensate drops rapidly
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and its susceptibility develops a peak, the vector and axialvector screening
masses become degenerate, which is an additional signal for the restoration
of chiral symmetry. In the same temperature region, the current results
for the pseudoscalar and scalar isovector screening masses favour that the
UA(1) symmetry is not effectively restored. This is supported by an analysis
of the spectrum of the Dirac matrix in the overlap discretization. However,
performing the thermodynamic, the continuum and the chiral limit is a
difficult problem which can hopefully be addressed in future computations.
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