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We discuss the influence of the chiral phase transition on the structure of
the probability distributions of conserved charges within the quark–meson
model based on the functional renormalization group approach. By consid-
ering the ratio of the probability distribution of the net-baryon number to
the Skellam function, we quantify characteristic features of the distribution
that are related to the O(4) criticality at the chiral crossover. We explore
the corresponding ratios for data obtained at RHIC by STAR Collaboration
and discuss their possible interpretation.
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1. Introduction

One of the goals of experiments with ultrarelativistic heavy ion colli-
sions is to explore the structure of the QCD phase diagram. Fluctuations
of conserved charges were shown to be promising observables to study rem-
nants of the critical phenomena in relativistic heavy ion collisions due to
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deconfinement of quarks and the chiral symmetry restoration [1, 2]. A par-
ticular role was attributed to the higher order cumulants of the net-baryon
number and electric charge fluctuations [2–4].

At small values of the quark chemical potential, the Lattice QCD (LQCD)
calculations show, that there is a chiral crossover, which appears in the crit-
ical region of the second order phase transition belonging to the universality
class of the 3-dimensional O(4) spin systems [5]. Thus, a promising ap-
proach for probing the phase boundary in heavy ion collisions is to explore
the fluctuations of the chiral phase transition, assuming the O(4) criticality.

Owing to the proximity of the chemical freeze-out to the chiral crossover,
at small values of the baryonic chemical potential, one may expect that the
critical fluctuations are reflected in data on conserved charges [6]. A baseline
for the non-critical properties of the cumulants of charge fluctuations is
provided by the hadron resonance gas (HRG), which reproduces the particle
yields at chemical freeze-out in heavy ion collisions [7], as well as the LQCD
equation of state in the hadronic phase [8].

Fluctuations of conserved charges are directly linked to the corresponding
probability distribution P (N). Thus, the critical properties of cumulants
of conserved charges must be also reflected in the probability distribution.
The baseline for the non-critical behavior of the probability distribution is
constituted by the Skellam function which is derived from the HRG at the
chemical freeze-out.

Recently, the effect of the chiral phase transition on the net-baryon num-
ber probability distribution was examined within the framework of the mean-
field and scaling theory of phase transitions [9], as well as within the effective
chiral models [10, 11]. It was found that the critical behavior of the cumu-
lants is a direct consequence of the change of the corresponding probability
distribution.

In this contribution, we summarize the main results which indicate the
essential properties of the net-baryon number probability distribution due
to remnants of the O(4) criticality. In particular, we show that at vanishing
chemical potential, the residual O(4) critical fluctuation at physical pion
mass leads to a specific narrowing of the probability distribution, relative
to the Skellam function. This corresponds to a negative structure of the
sixth order cumulant at the chiral crossover [10]. At finite chemical po-
tential, the ratio of P (N) to the Skellam function, exhibits a characteristic
asymmetry around the mean charge value M . For N < M , the probability
ratio is enhanced near the O(4) pseudocritical point, while for N > M it
is suppressed. This asymmetry of the distribution ratio is enhanced with
increasing chemical potential along the chemical freeze-out line.
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The influence of the O(4) criticality on the probability distribution of the
net-baryon number is calculated at finite temperature and quark–chemical
potential, and at a physical value of the pion mass in the quark–meson model
within the functional renormalization group scheme [9–11].

2. Modeling the net-baryon number probability distribution

In the grand canonical ensemble specified by the temperature T , sub-
volume V and chemical potential µ, the probability distribution for the
conserved charge N is given by

P (N ;T, V, µ) =
Z(T, V,N)eµN/T

Z(T, V, µ)
, (1)

where the canonical partition function Z(T, V,N) is obtained by a projection
of the grand partition function Z(T, V, µ), as [7]

Z(T, V,N) =
1

2π

2π∫
0

d
(µI

T

)
e−iN

µI
T Z(T, V, µ = iµI) . (2)

The above equations link the grand canonical partition function in a
finite volume V , at imaginary chemical potential, to thermodynamics at
fixed net charge N , and its probability distribution.

We extract the characteristic features of the probability distribution near
the chiral crossover, within the O(4) universality class, by applying the Func-
tional Renormalization Group (FRG) approach to the quark–meson (QM)
model [12]. At vanishing and moderate values of µ, the quark–meson model
in the chiral limit exhibits the second order phase transition, belonging to the
O(4) universality class [13]. For a physical pion mass, the chiral symmetry
is explicitly broken and the transition is of the crossover type. Nevertheless,
remnants of the O(4) criticality remain in various observables [6]. Thus, also
the probability distribution of the net-quark number is expected to exhibit
characteristic features reflecting the critical behavior of the underlying O(4)
transition.

We obtain the thermodynamics of the quark–meson model by comput-
ing the thermodynamic potential within the FRG approach, as discussed
in Ref. [13]. Following [12], we consider the scale dependent effective ac-
tion in the local potential approximation. Using the so-called optimized
cutoff functions, one obtains the evolution equation for the scale depen-
dent thermodynamic potential density Ωk(ρ), with the reduced field variable
ρ = (σ2 + ~π2)/2, as [13]
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12π2

k4
∂kΩk(ρ) =

3

Eπ
{1 + 2nB(Eπ)}

+
1

Eσ
{1 + 2nB(Eσ)} − 2νq

Eq

{
1− nF

(
E+
q

)
− nF(E−q )

}
,(3)

where nB and nF are the Bose and the Fermi distribution functions, respec-
tively and νq = 2NcNf = 12 is the quark degeneracy. The single particle
energies of pion, sigma meson and quark/antiquark are given by

Eπ =
√
k2 + Ω̄′k , Eσ =

√
k2 + Ω̄′k + 2ρΩ̄′′k , E±q =

√
k2 + 2g2ρ± µ ,

(4)

where Ω̄′k and Ω̄′′k denote the first and the second derivatives of Ω̄k = Ωk +
h
√

2ρk, with respect to ρ. The flow equation (3) is solved by using the
Taylor expansion method. Expanding the potential up to the third order
in ρ around the scale dependent potential minimum ρk,

Ωk(ρ) =
3∑

n=0

an(k)

n!
(ρ− ρk)n , (5)

and using Eq. (3), one finds the flow equations for the coefficients

dka0,k =
c√
2ρk

dkρk + δkΩk ,

dkρk = − 1(
c/(2ρk)3/2 + a2,k

)δkΩ′k ,
dka2,k = a3,k dkρk + δkΩ

′′
k ,

dka3,k = δkΩ
′′′
k , (6)

where dk = d/dk. The flow equations are solved numerically starting at the
ultraviolet cutoff scale Λ = 1.0 GeV [13]. We eliminate a1 by means of the
scale independent relation, h = a1(k)

√
2ρk.

There are four initial conditions for the flow equations which are fixed
at the scale k = Λ. Within this scheme, the initial value of a0 is just a con-
stant shift of thermodynamic potential density Ω. We note, however, that
such a cutoff at a finite momentum leads to unphysical behavior of ther-
modynamic quantities at high temperatures. This problem can be amended
by accounting for the µ- and T -dependent contribution of the momenta be-
yond the cutoff scale [3]. Following Ref. [3], we include the high-momentum
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contribution approximately by using the flow equation for non-interacting
massless quarks and gluons,

∂kΩ
Λ
k (T, µ) =

k3

12π2

{
2
(
N2

c − 1
)

[1 + 2nB(k)]

−νq
[
1− nF

(
k+
)
− nF

(
k−
)]}

. (7)

By integrating the flow equation (7) from k = ∞ to k = Λ, we obtain
ΩΛ(T, µ) which is then used as an initial condition a0(Λ) for the solution of
the flow equations (6).

We set a3(Λ) = 0 and fix ρk=Λ and a2(Λ) by requiring, that in vac-
uum, the pion mπ = 135 MeV and the sigma mσ = 640 MeV masses are
reproduced. The strength of the Yukawa coupling, g = 3.2, is fixed by the
constituent quark mass, Mq(T = µ = 0) = gσk=0(T = µ = 0) = 300 MeV
with σk=0(T = µ = 0) = fπ = 93 MeV. The full thermodynamic poten-
tial density of the quark–meson model Ω(T, µ), which includes thermal and
quantum fluctuations of the meson and quark fields, is then obtained from
Ω(T, µ) = limk→0Ωk, where Ωk is the solution of the flow equation (3).

With the grand canonical thermodynamic potential density obtained in
the FRG approach, Ω = −(T/V ) logZ, we calculate the canonical partition
function (2) and the corresponding probability distribution from Eq. (1).
The PQM(N) obtained in this way, contains all information about criticality
at the O(4) chiral crossover.

3. The O(4) criticality in the probability distribution

To unravel the influence of the chiral transition on the probability dis-
tribution PQM(N), one needs to establish the reference distribution, which
does not include the effect of critical fluctuations. At temperatures below
the pseudocritical or chiral crossover temperature Tpc, the thermodynamic
potential is well described by the quasi-ideal quark gas with a dynamically
generated mass. Consequently, at fixed T and V , the natural reference for
P (N) is the probability distribution of an ideal gas of quarks and anti-
quarks, i.e. the Skellam distribution [14]. The Skellam distribution is then
determined entirely by the mean number of quarks b = 〈Nq〉 and antiquarks
b̄ = 〈Nq̄〉

P S(N) =

(
b

b̄

)N/2
IN

(
2
√
bb̄
)
e−(b+b̄) , (8)

where IN (x) is the modified Bessel function of the first kind.
In the following, we compare the probability distribution PQM(N) with

the non-critical Skellam function P S(N), constructed with the same mean
and variance. At the O(4) chiral transition, both the mean and variance
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are finite, thus the above comparison is the sensitive method to identify
criticality which appears in the tail of the net-quark distribution.

In general, the probability distribution P (N) depends on the volume
parameter. However, as shown in [9], the volume dependence of the re-
scaled distribution

√
V P (N/

√
V ) is strongly reduced. This approximate

scaling is valid for both, the Skellam and the P (N) distribution calculated
within the QM model. Thus, in the ratios of PQM(N) and Skellam, the
leading volume dependence is canceled.

Figure 1 (left) shows the ratio of PQM(N), computed in the quark–meson
model at µ = 0 within the FRG approach [10], and the Skellam distribution
P S(N), calculated with the same mean M and variance σ, as a function of
δN/N6. We have normalized δN = N −M by the minimal value of the net-
quark number N > N6 which is needed in the Skellam distribution P S(N)
to saturate the sixth order cumulant [11].
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Fig. 1. The ratio of the probability distribution obtained in the quark–meson model
PQM(N) and the Skellam distribution P S(N) with the same mean and variance as
PQM(N). The left panel shows the ratio at µ = 0 for different temperatures T/Tpc,
expressed in units of the pseudocritical temperature Tpc, while in the right panel,
shows the same ratio at µ = 50 MeV. The δN and N6 are introduced in the text.

The PQM/P S ratio in figure 1 (left) is shown for different temperatures
normalized by Tpc. This ratio exhibits a characteristic dependence on tem-
perature, as Tpc is approached from below. For T ' Tpc, the PQM(N)/P S(N)
is less than unity, indicating the narrowing of the probability distribution for
larger |δN |, owing to the O(4) criticality. Indeed, the decrease of the prob-
ability ratio for δN/N6 ' 1 near Tpc is responsible for the negative values
of the sixth order cumulant, which are characteristic of the chiral crossover
in the O(4) universality class [10]. Consequently, shrinking probability dis-
tribution, relative to the Skellam function, can indeed be considered as a
necessary condition to observe the O(4) criticality [10].
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At finite chemical potential, the probability distribution P (N) of the
net-baryon number, is no longer symmetric around the mean. Thus, it is
not a priori clear, how the distribution is modified by the O(4) criticality.

The asymmetry of P (N) at µ 6= 0, appears due to the fugacity factor
eµN/T in Eq. (1), which suppresses the contribution from N < 0 and en-
hances that from N > 0. Consequently, at finite chemical potential, the tail
of the probability distribution P (N) is enhanced, and criticality is expected
to appear at smaller |δN |, and thus also in lower order cumulants.

Figure 1 (right) shows the PQM(N)/P S(N) ratio obtained in the QM
model at µ = 50 MeV. Below the pseudocritical temperature Tpc, the distri-
bution is asymmetric, with an enhanced tail relative to the Skellam function
for positive and suppressed tail for negative δN . However, as Tpc is ap-
proached, there is a qualitative change of the properties of the distribution,
resulting in the narrowing for positive δN . Moreover, a comparison of Fig. 1
(left) and (right) shows, that at finite µ, the narrowing of P (N) starts at
smaller δN/N6. The stronger narrowing of the distribution is consistent with
the fact, that at finite µ, already the third cumulant, exhibits the O(4) crit-
ical behavior. On the other hand, for negative δN the ratio of the distribu-
tions exhibits the opposite behavior, reflecting the asymmetry of the prob-
ability distribution at non-zero net-baryon density. The narrowing of the
probability ratio seen in Fig. 1 (right) is the characteristic feature of P (N)
due to the O(4) criticality. Evidently, the deviation of PQM(N)/P S(N) from
unity near Tpc(µ) is increasing with increasing |δN/N6| and µ.

4. The O(4) criticality and heavy ion collisions

In heavy ion collisions, particle yields, charge densities and their vari-
ance are described consistently by the HRG model on the same chemical
freeze-out line in the (T, µB)-plane [6, 15]. For a given collision energy and
centrality, there is a unique point on the freeze-out line. If the freeze-out
takes place sufficiently close to the chiral crossover, the critical fluctuations
are expected to leave a characteristic imprint in the cumulants and the cor-
responding probability distributions.

In Fig. 2 (left), we illustrate the expected structure in the QM model
of the probability distribution at chemical freeze-out, in the (T, µ) plane.
The freeze-out line was defined by the condition of a fixed variance of the
net-baryon number per unit volume. The µ-dependence of the probability
ratio, with the narrowing of the distribution for positive and broadening
for negative δN with increasing µ, is characteristic for the critical region.
As shown in Fig. 1, the distribution in a non-critical system exhibits the
opposite trend, with broadening for positive and narrowing for negative δN .
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Fig. 2. Left figure: The probability ratio PQM(N)/P S(N) for different (T, µ) points.
The points lie on an approximate freeze-out line, specified in the text. Right
figure: Ratios of the efficiency uncorrected probability distributions of the net-
proton number P (N) by STAR Collaboration [15] to the Skellam function P S(N)

with the same mean and variance as P (N). The data are for the most central
Au–Au collisions, with the number of events Nev > 100.

In general, the measurement of higher order cumulants, which are partic-
ularly sensitive to criticality, needs high statistics data owing to the increas-
ing importance of the tail of the distribution. Furthermore, the experimental
conditions, such as e.g. the acceptance corrections, must be under control to
make a meaningful comparison of the measured cumulants and their proba-
bility distribution with theoretical predictions [16–18].

Recently, STAR Collaboration has presented results on the probability
distribution of the net-proton number and the corresponding cumulants up
to the fourth order, measured in heavy ion collisions for different energies
and centralities [15]. Also preliminary results on the sixth order cumulant
have been presented by STAR [18].

While the cumulant ratios measured by STAR [15] were efficiency cor-
rected and tested against possible modifications due to volume fluctuations
and accepted kinematical windows, the data on the probability distribu-
tions of the net-proton number are uncorrected. Therefore, the significance
of a direct comparison of model predictions with the measured probability
distribution is, a priori, not robust.

Nevertheless, we have verified, that data on P (N) obtained by STAR [15]
are dominated by physics. The contribution of volume fluctuations is small,
and the ratios of cumulants computed directly from the uncorrected P (N)
[15], exhibit similar systematics as the efficiency corrected ratios. This
means, that data may yield at least a qualitative indication, whether the
measured distributions contain some remnants of the chiral criticality.
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Figure 2 (right) shows the probability ratio P (N)/P S(N) obtained from
the uncorrected data in the highest centrality bin, for

√
sNN = 200 and

19.6 GeV [15]. The probability ratio is constructed using the same method
as in Fig. 1. In order to avoid large uncertainties, we have restricted to
data with more than 100 events. Consequently, the probability distribu-
tions are limited to |δN/N6| < 0.5. This implies, that the present statistics
does not allow a reliable estimate of the sixth order cumulant. Nonetheless,
the ratios in Fig. 2 (right) clearly exhibit structures, which are qualitatively
similar to that shown in Figs. 1 and 2 (left). Thus, such structure in the
net-proton number probability distribution, could be the first indication of
the underlying O(4) criticality in heavy ion data. In particular, the narrow-
ing of the probability distribution relative to the Skellam function for the
positive δN , and an earlier drop of the ratio below unity for

√
s = 19.6 GeV,

are characteristic signatures expected from the O(4) criticality.
There are several potential contributions to the cumulants and the prob-

ability distribution from sources other than critical fluctuations [19, 21, 22],
as well as experimental issues e.g. regarding efficiency corrections [20]. Thus,
the final conclusion on the criticality of P (N) can be drawn only, when the
role of these effects is established.

In [15], the different cumulant ratios were analyzed with efficiency and
centrality bin width corrections. By constructing such cumulant ratios from
the uncorrected P (N) data discussed above, we have found, that deviations
from the Skellam distribution are slightly smaller than that seen in the
corrected ratios. However, the systematics and the energy dependence is
almost the same. Therefore, we regard the results shown in Fig. 2 (right) as
the lower limit for the possible deviations from the Skellam function.

The present method provides a transparent framework to search for crit-
icality in the probability distribution of conserved charges. If the narrowing
of P (N) relative to the Skellam, as seen in Fig. 2 (right), is still observed
after all experimental corrections are included, then this will provide an ev-
idence for remnants of the chiral crossover transition in the experimental
data.

5. Summary

We have discussed the properties of the net-baryon number probability
distribution P (N) near the chiral crossover at vanishing and at finite baryon
chemical potential. The critical properties of PQM(N) in the quark–meson
model were obtained within the functional renormalization group approach.

We have shown that the ratio of PQM(N) to Skellam function P S(N),
constructed with the same mean M and variance as PQM(N), clearly ex-
hibits the influence of the O(4) criticality. At vanishing chemical poten-
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tial, there is a characteristic reduction of this ratio below unity near the
pseudocritical phase boundary. At finite chemical potential, the ratio —
PQM(N)/P S(N) exhibits the characteristic asymmetry in δN = N −M .
For δN < 0, the probability ratio is enhanced near the O(4) pseudocritical
point, while for δN > 0 it is suppressed. Such asymmetry of the distribution
is enhanced with increasing µ along the freeze-out line.

The potential relevance of these results in heavy ion experiments was
also discussed. We have constructed the corresponding ratios of the net-
proton number distributions obtained by the STAR Collaboration and Skel-
lam function and discussed their interpretation. We found, that presently
available and still efficiency uncorrected data on the probability distribution,
are qualitatively consistent with the expectation, that there are remnants of
the O(4) criticality in the tail of distributions. However, to make the final
conclusion one would need the efficiency corrected and high statistic data.
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