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The interplay of mesonic fluctuations with an axial U(1)a-symmetry
breaking and resulting effects on the location of a possibly existing critical
endpoint in the QCD phase diagram are investigated in a framework of the
functional renormalization group within a Ny = 2 + 1 flavor quark-meson
model truncation. The axial U(1)s-symmetry breaking is imposed by a
mesonic Kobayashi-Maskawa—'t Hooft determinant. The quark mass sen-
sitivity of the chiral phase transition with and without the U(1)s-symmetry
breaking is studied.
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1. Motivation

It is well-established knowledge that Quantum Chromodynamics (QCD)
experiences a rapid crossover from a hadronic phase with broken chiral sym-
metry to a deconfined and chirally-symmetric quark—gluon plasma at high
temperature and moderate baryon densities. In the chiral limit, i.e., for
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Nt massless quark flavors the QCD Lagrangian is invariant under U(1)y ®
U(1)A ®SU(N¢)r, ® SU(N¢)r transformations where for our discussion unim-
portant discrete subgroups have been ignored. The vector subgroup U(1)y
corresponds to quark-number conservation and seems to be less important at
the chiral transition. However, it is uncertain what happens to the anoma-
lously broken U(1)a-symmetry at the transition. If the U(1)a-symmetry is
broken, the relevant symmetry is reduced to the chiral SU(N¢)r, ® SU(N¢)r
which is for two massless flavors isomorphic to the O(4) symmetry. For a
continuous phase transition, this would lead to a three-dimensional O(4)
universality class. However, the symmetry-breaking pattern changes signif-
icantly with a restored U(1)s-symmetry leading to an essential impact on
the nature of the chiral phase transition.

Recent experimental observations found a drop of at least 200 MeV in the
anomalously large mass of the 7’-meson close to the chiral crossover which
might signal an effective restoration of the U(1)a-symmetry [1, 2]. On the
theoretical side, the situation is more controversial: A number of recent QCD
lattice simulations found a substantial suppression of U(1)s-anomaly related
effects around the crossover [3-5] but there are also very recent results indi-
cating a U(1)a-symmetry breaking in terms of chiral susceptibilities above
the crossover [6]. Furthermore, some analytical studies show an effective
U(1)a-symmetry restoration at the transition in the chiral limit for three
quark flavors but not for two flavors [7-10], see also [11]. Finally, the order
and universality class of the chiral transition in the chiral limit for two quark
flavors are not fully settled and depend on the behavior of U(1)a-symmetry
breaking operators at the transition [12-14].

In the following, the role of the U(1)a-symmetry breaking at non-vani-
shing temperatures and quark chemical potentials is addressed. Fluctuations
are taken into account by solving functional renormalization group (FRG)
equations in a three flavor quark-meson model truncation. The U(1)a-sym-
metry breaking is implemented effectively by a mesonic Kobayashi—
Maskawa—"t Hooft determinant in the truncation |15, 16|. Particular focus
will be put on the interplay of mesonic fluctuations and U(1)a-symmetry
breaking. Consequences for the location of a possibly existing critical end-
point in the QCD phase diagram are discussed and the quark mass sensitiv-
ity of the three flavor chiral transition with and without U(1)a-symmetry
breaking is explored.

2. Flow equations for the three-flavor quark—meson model

Low-energy QCD with Ny = 3 quark flavors can be described with an
effective chiral quark—meson model which captures the degrees of freedom of
strongly-interacting matter relevant for the chiral phase transition. The Eu-
clidean Lagrangian [17]
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L= q|d+ (o +irsm) T g+ Tr [,510,5] + Ulpr, p2) , (1)

includes two degenerate light and one strange quarks ¢ which are coupled
through a flavor-independent Yukawa coupling h to scalar, o, and pseu-
doscalar mesons m,. Additionally, we have introduced a flavor symmetric
quark chemical potential y. The purely mesonic theory is parameterized
with fields in matrix form X = (o3, + im,)T?, where T? are the generators of
the flavor U(3) group. The potential U (py, p2) parameterizes the interactions
of all eighteen mesons in terms of the chiral invariants

pr =Tt [2*2] . pa=Tr [(2@)1 —f. 2)

Non-vanishing quark masses can be implemented in the quark—meson model
with explicit symmetry breaking terms that are linear in the uncharged
scalar mesons og, o3 and og. Since the o3 term breaks the SU(2)-isospin
symmetry explicitly, the (2 4 1)-flavor version of the quark—meson model
is obtained by ignoring the o3 and consider only the g and og breaking.
For explicit calculations, it is convenient to change the singlet-octet basis
and perform a unitary rotation to the non-strange, 0., and strange, oy,
scalar fields.

The Lagrangian defined in Eq. (1) respects the full chiral symmetry
U(1)y xSU(3)r,xSU(3),xU(1)a. The anomalous breaking of the U(1)a-sym-
metry can be taken into account by adding a Kobayashi—-Maskawa—'t Hooft
determinant |15, 16]

€ =det X +det 2T, (3)

which is cubic in the (pseudo)scalar meson fields, to the Lagrangian Eq. (1).
This interaction is invariant under U(1)y ® SU(3)r, ® SU(3)r, and breaks
the U(1)a-symmetry in Eq. (1). With this term, the proper mass split-
ting between 7- and n’-meson as well as the pion mass can be reproduced
but other implementations of the U(1)s-symmetry breaking are, in general,
possible. The breaking term in Eq. (3) scales with the meson fields to the
power Ny which leads to important N¢-dependent effects for the chiral phase
transition. For three flavors, the mass splitting effects, caused by the cu-
bic determinant, disappear in a symmetric phase of vanishing expectation
values for all mesonic fields.

In total, the chirally invariant meson potential of the (2+41)-flavor quark—
meson model U in Eq. (1) is replaced by

Ul(p1, p2) — Ulp1, p2) — c€ — o0y — cyoy (4)

where two explicit chiral and one U(1)p-symmetry breaking terms have been
added.
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For a non-perturbative renormalization group analysis of the chiral phase
transition, we employ the effective average action approach by Wetterich [18].
We truncate the effective action in form of a quark-meson model in a lead-
ing order derivative expansion. Recently, the relation of these truncations
to full QCD has been affirmed by using dynamical hadronization. This
approach introduces RG scale-dependent mesonic degrees of freedom that
eliminate four-fermion interactions generated by gluon exchanges [19-22],
see also [23]. Extending the formalism to finite temperature 7', the flow
equation for the RG-scale k-dependent and symmetrical potential Uy, with
an optimized three-dimensional regulator [24] reads

8(?]“ —k5 221\[?100& &
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6f1Ef{an ( 5T )—i— an ( 5T >} (5)

The fermionic (f) and bosonic (b) quasi-particle energies have the typical

form E; = (/k?+ mf Explicit expressions for the corresponding meson
masses m?, calculated with the potential Eq. (4), can be found in [25]. In the
non-strange—strange (z—y) basis the quark masses simplify to m, = ho, /2
and my, = hay/\/i.

The solution of this flow equation describes the scale evolution of the
effective potential starting from an initial potential at some high ultravi-
olet scale A towards the full quantum effective potential in the infrared
k — 0 [26]. Evaluating the evolved potential at the minimum yields the
grand potential as a function of temperature 7" and quark chemical poten-
tial p which includes all quantum and thermal fluctuations. We adjust the
initial potential Up—,4 at the UV scale A to reproduce known experimental
observables in the infrared such as the pion mass or decay constants in the
vacuum [25]. Concerning our implementation of U(1)a-symmetry breaking,
we consider two different scenarios: one with a constant, ¢.e. temperature-
and RG-scale-independent coupling for the Kobayashi-Maskawa—"t Hooft
determinant and another without the determinant. In a future work, we
will improve this truncation by considering a running version of this cou-
pling [27] and in [28] the scale-dependency of the U(1)a-anomaly induced
determinant has already been analyzed in an RG context with QCD degrees
of freedom in the vacuum.

For comparison, we also present results obtained with a standard mean-
field approximation (MFA) where the mesonic fluctuations are completely
neglected and a divergent vacuum contribution from the quark loop to the



Three-flavor Chiral Phase Transition and Azial Symmetry Breaking . .. 85

grand potential has been dropped. On the other hand, this divergent vacuum
contribution is included in the flow equation (5). Hence, its influence on the
phase transition can be investigated by solving the flow equation without
mesonic fluctuations which is also called extended mean-field approximation.

3. Chiral transition and axial anomaly

We start with a discussion of the three-flavor chiral phase transition at fi-
nite temperature and flavor symmetric chemical potential p and investigate
the interplay of fluctuations with the anomalous U(1)a-symmetry break-
ing. The finite-temperature behavior of the (pseudo)scalar non-strange and
n-, n’-meson screening masses obtained with the FRG are shown in Fig. 1 for
p = 0 with (left panel) and without (right panel) U(1)a-symmetry breaking.
Without breaking, the n’-meson degenerates with the pion mass and the two
sets of light chiral partners (o, 7) and (dp,n’) merge in the chirally symmet-
ric high-temperature phase. On the other hand, for a constant temperature-
and scale-independent U(1)a-symmetry breaking, a mass gap between the
two sets of the chiral partners is obtained and the 1’-meson mass drops about
200 MeV near the chiral crossover in agreement with experimental observa-
tions [1, 2]. Since the anomalous contribution to the 7'~ and n-meson masses
is proportional to the condensates, this behavior is a consequence of the
melting of the light condensate (o) at the chiral crossover. Furthermore,
the melting of the light condensate entails that the n-meson is dominantly
strange and the n’-meson dominantly non-strange above the crossover tem-
perature [17]. The remaining difference between 7'-meson and pions is then
directly proportional to the strange condensate (o) which decreases much
slower.
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Fig. 1. Scalar and pseudoscalar meson masses for p = 0.
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The melting of both condensates as a function of temperature is demon-
strated for p = 0 in Fig. 2, again, with (left panel) and without U(1)a-sym-
metry breaking (right panel). In addition to the FRG results (solid lines), we
also show results obtained with a standard MFA (dotted lines) and extended
MFA (dashed lines). In analogy to similar two flavor investigations [29], we
find generally that fluctuations wash out the transition and the condensates
decrease faster in the standard MFA. However, this behavior cannot be solely
attributed to mesonic fluctuations. Comparing the FRG non-strange con-
densate (o) with the one obtained in the renormalized model (eMFA), the
influence of the U(1)s-symmetry breaking term becomes visible. Without
the breaking term both non-strange condensates agree well, whereas with
a U(1)a-breaking term the melting of (o) is further softened if mesonic
fluctuations are added. In other words, the chiral transition is considerably
affected by the Kobayashi-Maskawa—"t Hooft term only if mesonic fluctu-
ations are taken into account, whereas the mean-field investigations show
only a weak dependence on the U(1)a-symmetry breaking.
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Fig. 2. Non-strange (0,) and strange (o,) chiral condensates for y = 0.

At non-vanishing chemical potential the impact of mesonic fluctuations
including a U(1)a-symmetry breaking has similar consequences. For this
purpose, we investigate the existence and location of the critical endpoint
(CEP) in the (T, p)-plane obtained with the FRG and mean-field approx-
imations with and without the Kobayashi-Maskawa—'t Hooft determinant.
The results are collected in the left panel of Fig. 3. An endpoint labeled
with a star is the corresponding result including the determinant and a
cross denotes the results without a U(1)s-symmetry breaking term. Since
the location of the endpoints also depends considerably on the chosen value
of the o-meson mass [17], we have fixed the value to m, = 480 MeV in all
calculations. At the critical point, the quark-number susceptibiliy diverges
because the chiral transition is of second order. This is shown in the right
panel of Fig. 3.
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Fig.3. Charts of critical endpoints. Left panel: stars U(1)s-symmetry breaking
included, crosses: no U(1)a-symmetry breaking term. Right panel: FRG quark
number susceptibilities, dashed lines without and solid lines with U(1)a-symmetry
breaking term.

Similar to the g = 0 results, we see that the inclusion of the fermionic
vacuum term (eMF) makes the system less critical and, therefore, the loca-
tion of the CEP is pushed towards larger chemical potentials and smaller
temperatures as compared to the standard mean-field approximation. In
both mean-field approximations, the influence of U(1)a-symmetry break-
ing is rather weak and we find that the CEP without a breaking term
is always at slightly smaller temperatures and larger chemical potentials.
Adding mesonic fluctuations with the FRG leads to a qualitative change.
With a U(1) po-symmetry breaking, the mesonic fluctuations push the CEP to
even larger chemical potentials and smaller temperatures in contrast to the
mean-field approximations. This behavior is in agreement with observations
in two-flavor O(4)-symmetric investigations [29], which implicitly assume a
maximal U(1)s-symmetry breaking if the remaining chiral (pseudo)scalar
multiplets, the n and @ fields, are neglected. Interestingly, without the de-
terminant, the endpoint is moved in the opposite direction towards smaller
chemical potentials and larger temperatures if additionally mesonic fluctua-
tions are taken into account.

It is enlightening to extend the analysis and study the quark mass sensi-
tivity of the chiral transition with a focus on the role of fluctuations together
with the axial U(1)s-symmetry. In an RG context with an e-expansion,
it has been argued that in a purely bosonic theory for vanishing anomaly
the chiral phase transition should be of fluctuation-induced first order for
N¢ > 2 in the SU(3)-symmetric chiral limit [12]. Including the anomaly
term, the order does not change and the phase transition remains first order
for Ny > 3. However, the case of Ny = 2 massless flavors is special. If
the temperature-dependence of the coupling of the, in this case quadratic,



88 B.-J. SCHAEFER, M. MITTER

Kobayashi-Maskawa—'t Hooft determinant is negligible the phase transition
can be second order with O(4) criticality. In other words, a temperature-
independent U(1)a-symmetry breaking can smoothen the transition from
first to second order in the two-flavor chiral limit, see also |13, 14| for recent
investigations. The opposite happens for three flavors and the first-order
transition can become even stronger in the three-flavor chiral limit.

In Fig. 4 we show the non-strange and strange condensates in the light
chiral limit, ¢, — 0 and ¢, # 0 for p = 0 similar to Fig. 2. In agreement
with previous works [17], a first-order transition is found independent of the
U(1) o-symmetry breaking in the standard mean-field approximation. Going
beyond mean-field by including the fermionic vacuum contribution (eMF),
the transition changes to second order. With the FRG the U(1)s anomaly
has a significant influence: with the determinant we find a second-order
transition and without a first-order transition.
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Fig.4. Condensates for 4 = 0 similar to Fig. 2 for the light chiral limit ¢, — 0.

The results on the quark mass sensitivity of the chiral transition with and
without the U(1)a-symmetry are consistent with the results of [12] under
the assumption that the Kobayashi-Maskawa—'t Hooft determinant behaves
qualitatively like a two-flavor determinant in the case of a physical strange
quark mass. This is also indicated by the fact that the strange condensate
is affected only mildly at the light chiral transition. As a consequence,
the cubic determinant for Ny = 3 behaves like the quadratic two-flavor
Kobayashi—-Maskawa—"t Hooft term. Furthermore, these findings elucidate
why the system is “more critical” in the absence of the determinant, i.e., why,
in this case, the critical endpoint is pushed towards larger temperature and
smaller chemical potential if mesonic fluctuations are taken into account.

Finally, we want to point out that a first-order transition emerges in the
chiral limit only if the chiral invariant ps is taken into account which is most
important for similar two-flavor investigations.
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4. Summary and conclusions

The influence of quantum and thermal fluctuations on the chiral three-
flavor phase transition with and without an axial U(1)a-symmetry breaking
is investigated in the framework of the functional renormalization group
with a quark—meson model truncation. Different mean-field approxima-
tions where certain fluctuations are neglected, are confronted to the full
FRG analysis. The U(1)s-symmetry breaking is effectively implemented
by a Kobayashi—-Maskawa—'t Hooft determinant with a constant coupling
strength.

We find a strong dependence of the location of the critical endpoint on
the U(1)a-symmetry breaking if mesonic fluctuations are taken into account.
With a broken U(1)a-symmetry the endpoint is pushed towards smaller
temperature and larger quark chemical potentials which is in contrast to
corresponding investigations within mean-field approximations.

In the limit of vanishing light quark masses with a physical strange
quark mass, the transition is first order for a U(1)a-symmetric theory but
second order with a constant U(1)a-symmetry breaking Kobayashi-Maska-
wa—'t Hooft determinant. It will be fascinating to see the results for an
improved truncation with a temperature- and scale-dependent U(1)a-sym-
metry breaking implementation whose outcomes should lie in between our
two findings.

Both findings, the influence of the determinant on the location of the
critical endpoint as well as the order of the chiral transition, can be traced
back to an effective mass term induced by the U(1)s-symmetry breaking
term in the light flavor sector of the theory.
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