
Vol. 7 (2014) Acta Physica Polonica B Proceedings Supplement No 1

TRANSVERSE MOMENTUM DISTRIBUTIONS
AT THE LHC AND TSALLIS THERMODYNAMICS∗

M.D. Azmi, J. Cleymans

UCT-CERN Research Centre and Department of Physics
University of Cape Town, Rondebosch, South Africa

(Received February 14, 2014)

An overview is presented of transverse momentum distributions of par-
ticles at the LHC using the Tsallis distribution. The use of a thermodynam-
ically consistent form of this distribution leads to an excellent description
of charged and identified particles. The values of the Tsallis parameter q
are truly remarkably consistent.
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1. Introduction

It is by now standard to parametrize transverse momentum distributions
with functions having a power law behaviour at high momenta. This has
been done by the STAR [1] and PHENIX [2] collaborations at RHIC, and by
the ALICE [3], ATLAS [4] and CMS [5] collaborations at the LHC. In this
paper, we would like to pursue the use of the Tsallis distribution to describe
transverse momentum distributions at the highest beam energies.

In the framework of Tsallis statistics [6–10] the entropy S, the particle
number N , the energy density ε, and the pressure P are given by corre-
sponding integrals over the Tsallis distribution

f =

[
1 + (q − 1)

E − µ
T

]− 1
q−1

. (1)
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It can be shown (see e.g. [10]) that the relevant thermodynamic quan-
tities are given by

S = −gV
∫

d3p

(2π)3
[f q lnq f − f ] , (2)

N = gV

∫
d3p

(2π)3
f q , (3)

ε = g

∫
d3p

(2π)3
Ef q , (4)

P = g

∫
d3p

(2π)3
p2

3E
f q , (5)

where T and µ are the temperature and the chemical potential, V is the
volume and g is the degeneracy factor. We have used the short-hand notation

lnq(x) ≡ x1−q − 1

1− q
, (6)

often referred to as q-logarithm. It is straightforward to show that the
relation

ε+ P = Ts+ µn (7)

(where n, s, ε refer to the densities of the corresponding quantities) is satis-
fied. The first law of thermodynamics gives rise to the following differential
relations

dε = Tds+ µdn , (8)
dP = sdT + ndµ . (9)

Since these are total differentials, thermodynamic consistency requires
the following Maxwell relations to be satisfied

T =
∂ε

∂s

∣∣∣∣
n

, (10)

µ =
∂ε

∂n

∣∣∣∣
s

, (11)

N = V
∂P

∂µ

∣∣∣∣
T

, (12)

S = V
∂P

∂T

∣∣∣∣
µ

. (13)
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This is indeed the case, e.g. for Eq. (12) this follows from

∂P

∂µ

∣∣∣∣
T

= −g
∫

d3p

(2π)3
p2

3

d

EdE

[
1 + (q − 1)

E − µ
T

]− q
q−1

= −g
∫

d3p

(2π)3
p2

3

d

pdp

[
1 + (q − 1)

E − µ
T

]− q
q−1

= g

∫
d cos θdφdp

(2π)3

[
1 + (q − 1)

E − µ
T

]− q
q−1 d

dp

p3

3
= n

after an integration by parts and using p dp = E dE.
Following from Eq. (3), the momentum distribution is given by

d3N

d3p
=

gV

(2π)3

[
1 + (q − 1)

E − µ
T

]−q/(q−1)
, (14)

or, expressed in terms of transverse momentum, pT, the transverse mass,
mT ≡

√
p2T +m2, and the rapidity y

d2N

dpT dy
= gV

pTmT cosh y

(2π)2

[
1 + (q − 1)

mT cosh y − µ
T

]−q/(q−1)
. (15)

At mid-rapidity, y = 0, and for zero chemical potential, as is relevant at
the LHC, this reduces to

d2N

dpT dy

∣∣∣∣
y=0

= gV
pTmT

(2π)2

[
1 + (q − 1)

mT

T

]−q/(q−1)
. (16)

In the limit where the parameter q goes to 1, it is well-known that this
reduces to the standard Boltzmann distribution

lim
q→1

d2N

dpT dy
= gV

pTmT cosh y

(2π)2
exp

(
−mT cosh y − µ

T

)
. (17)

The parametrization given in Eq. (15) is close to the one used by various
collaborations [1–5]

d2N

dpT dy
= pT

dN

dy

(n− 1)(n− 2)

nC(nC +m0(n− 2))

[
1 +

mT −m0

nC

]−n
, (18)

where n and C are fit parameters. This corresponds to substituting [19]

n→ q

q − 1
, (19)
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and
nC → T +m0(q − 1)

q − 1
. (20)

After this substitution, Eq. (18) becomes

d2N

dpT dy
= pT

dN

dy

(n− 1)(n− 2)

nC(nC +m0(n− 2))

×
[

T

T +m0(q − 1)

]−q/(q−1) [
1 + (q − 1)

mT

T

]−q/(q−1)
. (21)

At mid-rapidity, y = 0, and zero chemical potential, this has the same
dependence on the transverse momentum as Eq. (16) apart from an addi-
tional factor mT on the right-hand side of Eq. (16). However, the inclusion
of the rest mass in the substitution Eq. (20) is not in agreement with the
Tsallis distribution as it breaks mT scaling which is present in Eq. (16) but
not in Eq. (18). The inclusion of the factor mT leads to a more consistent
interpretation of the variables q and T .

A very good description of transverse momenta distributions at RHIC
has been obtained in Refs. [11, 12] on the basis of a coalescence model
where the Tsallis distribution is used for quarks. Tsallis fits have also been
considered in Refs. [13–15] but with a different power law leading to smaller
values of the Tsallis parameter q.

Interesting results were obtained in Refs. [16, 17] where spectra for iden-
tified particles were analysed and the resulting values for the parameters q
and T were considered.

2. Details of transverse momentum distributions

The transverse momentum distributions of identified particles, as ob-
tained by the ALICE Collaboration at 900 GeV in p–p collisions, are shown
in figure 1. The fit for positive pions was made using

d2N

dpT dy

∣∣∣∣
y=0

= V
pT

√
p2T +m2

π

(2π)2

1 + (q − 1)

√
p2T +m2

π

T

−q/(q−1) (22)

with q, T and V as free parameters.
In figure 2 we show fits to the transverse momentum distributions of

strange particles obtained by the ALICE Collaboration [3] in p–p collisions
at 900 GeV.

Similarly, we show fits to the transverse momentum distributions ob-
tained by the CMS Collaboration [5] in figure 3 and by the ATLAS Collab-
oration in figure 4.
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Fig. 1. Fits to transverse momentum distributions of positive particles [3] using the
Tsallis distribution.
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Fig. 2. Fits to transverse momentum distributions of strange particles [3] using the
Tsallis distribution.

The transverse momentum distributions of charged particles were fitted
using a sum of three Tsallis distributions, the first one for π+, the second
one for K+ and the third one for protons p. The relative weights between
these were determined by the corresponding degeneracy factors, i.e. 1 for
π+ and K+ and 2 for protons. The fit was taken at mid-rapidity and for
µ = 0 the following expression was used
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1

2πpT

d2N(charged particles)

dpTdy

∣∣∣∣
y=0

=
2V

(2π)3

3∑
i=1

gimT,i

[
1 + (q − 1)

mT,i

T

]− q
q−1

, (23)

where i = (π+,K+, p) and gπ+ = 1, gK+ = 1 and gp = 2. The factor 2 in
front of the right-hand side of this equation takes into account the contri-
butions of the antiparticles (π−,K−, p̄).
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Fig. 3. Fits to transverse momentum distributions of negatively charged particles [5]
using the Tsallis distribution.
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Fig. 4. Fits using the Tsallis distribution to transverse momentum distributions of
charged particles measured by the ATLAS Collaboration [4] in p–p collisions for
three different beam energies.
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The Tsallis distribution also describes the transverse momentum distri-
butions of charged particles in p–Pb collisions in all pseudorapidity intervals
as shown in figure 5.

The values of the Tsallis parameter q are shown in figure 6 and show
a remarkable consistency.
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Fig. 5. Fits to transverse momentum distributions in p–Pb collisions obtained by
the ALICE Collaboration [3] using the Tsallis distribution.
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spectra described in the text.
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3. Summary of results

The Tsallis distribution described here in Eq. (16) leads to excellent fits
to the transverse momentum distributions in high energy p–p and p–Pb
collisions. The values obtained for the Tsallis parameter q are truly remark-
ably consistent, a feature which does not become apparent when using the
parametrization of Eq. (18).
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