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The 4PI effective action provides a hierarchy of integral equations which
have the form of Bethe–Salpeter equations. The vertex functions obtained
from these equations can be used to truncate the exact renormalization
group flow equations. This truncation has the property that the flow is
a total derivative with respect to the flow parameter and is equivalent
to solving the nPI equations of motion. This result establishes a direct
connection between two non-perturbative methods.
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1. Introduction

There is a lot of interest in the study of non-perturbative systems, which
cannot be solved by exploiting the existence of a small expansion parameter.
In this paper, we discuss two formalisms that have been proposed to address
non-perturbative problems: n-particle irreducible (nPI) effective theories,
and the exact renormalization group (RG). The nPI formalism has been used
to study finite temperature systems and non-equilibrium dynamics (see [1, 2]
and references therein), and transport coefficients [3, 4]. The exact RG has
been applied to a variety of problems [5].

We show that the 4PI effective action produces two Bethe–Salpeter (BS)
equations that can be used to truncate the RG flow equations at the level
of the second equation, and that the resulting flow equations for the 2- and
4-point functions are total derivatives whose integrals give the 4PI eom’s.
This result is surprising (since the full hierarchy of RG flow equations are
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obtained using a single bi-local source term), and suggests that a BS trun-
cation at arbitrary orders produces equations whose integrals give the nPI
eom’s.

We work with a scalar field theory with quartic coupling and consider
only the symmetric case where the expectation value of the field is zero. We
use a compactified notation in which the space-time coordinates are repre-
sented by a single numerical subscript. We also use an Einstein convention
in which a repeated index implies an integration over space-time variables.

2. The nPI effective theory

The nPI effective action is obtained by taking the nth Legendre transform
of the generating functional which is constructed by coupling the field to
n source terms of the form Jiϕi + 1

2Rijϕiϕj + . . . The effective action has
the form

Γ = Scl[φ] +
i

2
Tr lnG−1 +

i

2
Tr
[(
G0
)−1

G
]
− iΦ2 ,

where Φ2 contains all contributions which have two or more loops. For
example, Φ2 for the 4-Loop 4PI effective action in the symmetric theory [6]
is shown in Fig. 1.
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Fig. 1. The functional Φ2 for the 4-Loop 4PI effective action.

The self consistent propagator and vertex are obtained through the vari-
ational principle by solving the equations produced by taking the functional
derivative of the effective action and setting the result to zero. We define
kernels

Λdisco
abcd...rstu... + Λabcd...rstu...

= 2#G4!#V
(
G−1
rr′ . . .

) δ(#G)+(#V )Φ

δGabδGcd . . . δVr′s′t′u′ . . .
. (1)

The factors #G and #V indicate the number of G’s and V ’s with respect to
which the functional derivative is taken. The inverse propagators truncate
the legs that are left behind by the functional derivatives with respect to V ,
and they are moved through the derivative in (1) only so that the equation
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is easier to write — functional derivatives do not act on legs by definition.
The definition of the kernel Λab... also excludes a disconnected piece that
contains only inverse propagators.

It is well known that the 2PI effective action gives a BS equation for a
diagonal 4-point function. Writing the effective action as a functional of the
form Φ[φ,G, J(φ,G), R(φ,G)], we obtain

δ

δRij

δ

δGkl
Φ = − i

4
(δikδjl + δilδjk) =

δGxy
δRij

δ2Φ

δGxyδGkl
. (2)

Calculating the derivative gives

−2i
δGxy
δRij

= 〈ϕxϕyϕiϕj〉 − 〈ϕxϕi〉〈ϕyϕj〉 − 〈ϕxϕj〉〈ϕyϕi〉

= GiaGjbGxcGydMabcd +GixGjy +GiyGjx . (3)

Substituting (3) into (2) and using the kernel definition (1) produces

Mxykl = Λxykl + 1
2ΛxyabGacGbdMcdkl . (4)

Higher order BS equations are calculated the same way [7, 8]. Using the
4PI effective action (2) becomes

δ

δRij

δ

δGkl
Φ = − i

4
(δikδjl + δilδjk) =

δGxy
δRij

δ2Φ

δGxyδGkl
+
δVxywz
δRij

δ2Φ

δVxywzδGkl
.

The method used to obtain (3) gives

δVxywz
δRab

=
i

2
GasGbt [Vwxyzst + (6)GuvVxztuVwysv] ,

and combining pieces we obtain the result in the first line of Fig. 2. Similarly,
we obtain a BS equation for a 6-point function from δΦ/δRδV

δ2Φ

δRabδVcdef
=
δGxy
δRab

δ2Φ

δGxyδVcdef
+
δVxywz
δRab

δ2Φ

δVxywzδVcdef
.

Substituting the derivatives and kernels gives, after a long calculation, the
second line in Fig. 2.
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Fig. 2. BS equations from the 4PI effective action.

3. Renormalization group flow equations

The RG is constructed by building a family of theories indexed by a
continuous parameter κ with the dimension of a momentum, such that
fluctuations are smoothly taken into account as κ is lowered from the mi-
croscopic scale Λ (at which the couplings are defined) down to zero. We
add to the original action a non-local term which is quadratic in the fields
(
∫
Q =

∫
d4q/(2π)4)

∆Sκ =
1

2

∫
Q

Rκ(q)ϕ(q)ϕ(−q) . (5)

The function Rκ(q) approaches zero for q ≥ κ, so that modes ϕ(q ≥ κ) are
unaffected, and κ2 for q � κ, which suppresses modes ϕ(q � κ) by giving
them a mass ∼ κ. Generating functionals are defined in the usual way but
with the action S replaced by S + ∆Sκ, we obtain (Φ = iΓ , Rκ = iRκ)

∂κΦκ =
1

2

∫
Q

∂κRκ(q)Gκ(q,−q) , −(Gκ)−1 = Rκ + Φ(2)
κ . (6)

Functionally differentiating (6) with respect to φ produces the exact RG
flow equations which form an infinite coupled hierarchy. The first two flow
equations are (see Fig. 3)

∂κΦ
(2)
κ =

1

2

∫
Q

(Gκ∂κRκGκ)Φ(4)
κ , (7)

∂κΦ
(4)
κ = (6)

1

2

∫
Q

Φ(4)
κ (Gκ∂κRκGκ) GκΦ(4)

κ +
1

2

∫
Q

(Gκ∂κRκGκ)Φ(6)
κ . (8)

The factor (6) in Eq. (8) and Fig. 3 is a short-hand notation which means
that there are 6 permutations of external legs. We use numerical factors in
brackets in equations (figures) to represent additional terms that correspond
to permutations of external indices that are not written (drawn).
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Fig. 3. Representation of equations (7) and (8).

In order to do calculations, the infinite hierarchy of RG flow equations
must be truncated. This is a common feature of non-perturbative methods,
and often leads to difficulties (see, for example, [9]). The hierarchy of RG
flow equations can be truncated at the level of the first equation using the
Bethe–Salpeter (BS) equation derived from the 2PI effective action [10]. We
can perform the truncation at the 4PI level using the BS equations in Fig. 2.
We extend these equations to the deformed theory by using kernels obtained
from functional derivatives of the 4PI effective action which are subsequently
evaluated at G = Gκ. Diagrammatically, we substitute the BS equations in
Fig. 2 into the tadpole diagrams in Fig. 3. After a long calculation, this
produces the diagrams in Figs. 4 and 5 [7]. We represent the sum of terms
∂κRκ + ∂κΦ

(2) by a small grey/red dot.
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Fig. 4. The diagrams produced when the BS equation in the first line of Fig. 2 is
substituted into the tadpole diagram in the first part of Fig. 3.

= 1
2 + 1

24

Fig. 5. The diagrams produced when the BS equation in the second line of Fig. 2
is substituted into the tadpole diagrams in the second part Fig. 3.
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We compare our results for ∂κΦ
(2)
κ and ∂κΦ

(4)
κ with the derivatives ∂κΣκ

and ∂κVκ using the 4PI equations of motion extended to the deformed theory

∂κ(Σij)κ = 2∂κ(Gkl)κ
δ2Φ

δGklδGij

∣∣∣∣
Gκ

+2∂κ(Vklrs)κ(Gka)κ(Glb)κ(Grc)κ(Gsd)κ G
−1
aa′G

−1
bb′G

−1
cc′G

−1
dd′

δ2Φ

δVa′b′c′d′δGij

∣∣∣∣
Gκ

=
1

2
∂κ(Gkl)κ(Λijkl)κ +

1

24
∂κ(Vklrs)κ(Gka)κ(Glb)κ(Grc)κ(Gsd)κ(Λκ)abcdij .

(9)

Equation (9) is precisely the result that is shown in Fig. 4 if we identify
Vκ = Φ

(4)
κ , which means we have

∂κΦ
(2)
κ (p) = ∂κΣκ(p) . (10)

For the 4-point function, a similar calculation gives [7]

∂κΦ
(4)
κ (p1, p2, p3,−p1 − p2 − p3) = ∂κVκ(p1, p2, p3,−p1 − p2 − p3) . (11)

Equations (10) and (11) show that the RG equations for the 2- and 4-point
functions are total derivatives whose integrals can be written as the 4PI
equations of motion.

4. Conclusions

We have shown that the BS truncation produces flow equations that are
total derivatives with respect to the flow parameter, and that the integrals
of the flow equations give the equations of motion of the 4PI effective theory.
This establishes a direct connection between two non-perturbative methods.
For the nPI formalism, there could be a practical advantage in reformulat-
ing the integral equations as flow equations, because initial value problems
are usually easier to solve than non-linear integral equations. Furthermore,
regarding the vertices from the nPI effective theory as flow equations gives
new insight into the problem of how to renormalize the nPI effective theory
for n > 2.
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