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PROBING DECONFINEMENT WITH POLYAKOV
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We present new lattice results on Polyakov loop susceptibilities in the
SU(3) pure gauge system. These observables reflect the spontaneous break-
ing of Z(3) center symmetry and can serve as excellent probes for decon-
finement. An effective model is formulated for the Polyakov loop, with its
parameters constrained by existing quenched lattice data, including fluctu-
ations.
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1. Introduction

Deconfinement can be described by the spontaneous breaking of Z(3)
center symmetry [1–5]. This symmetry, however, is explicitly broken by
dynamical quarks. The problem here is that string breaking will occur at
long distances for the static quark potential, even when the temperature is
below criticality. If one aims at studying the confining part of the heavy
quark potential, and probe the related symmetry breaking phase transition,
it is useful to focus first on QCD in the limit of exact Z(3) symmetry —
SU(3) pure gauge theory.

The relevant observables to study deconfinement are the Polyakov loop
and its susceptibilities. The Polyakov loop measures the free energy of a
static quark immersed in a hot gluonic medium [5, 6], and can be used to
define an order parameter for the deconfinement transition. At low tempera-
tures its thermal expectation value vanishes, signaling color confinement; at
high temperatures it is nonzero, resulting in a finite energy of a static quark
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and consequently the deconfinement of color. The Polyakov loop suscepti-
bility, on the other hand, represents fluctuations of the order parameter. It
features a peak at the transition temperature, and a width that signals the
temperature window in which phase change occurs.

The basic thermodynamic functions of the SU(3) pure gauge theory,
such as pressure and entropy, are well established within the lattice ap-
proach [7, 8]. However, it is less clear for the temperature dependence of the
renormalized Polyakov loop and its susceptibilities. Careful study of these
quantities can enhance our understanding of the QCD phase structure.

2. Polyakov loop and its susceptibilities on the lattice

On an N3
σ ×Nτ lattice, the Polyakov loop is defined as the trace of the

product over temporal gauge links

Lbare
~x =

1

3
Tr

Nτ∏
τ=1

U(~x,τ),4 , (1)

Lbare =
1

N3
σ

∑
~x

Lbare
~x . (2)

The bare Polyakov loop requires renormalization to give a physical,
Nτ -independent result. We perform the following multiplicative renormal-
ization [9]

Lren =
(
Z
(
g2
))Nτ

Lbare , (3)

and introduce the ensemble average of its modulus, 〈|Lren|〉. This quantity
is well defined in the continuum and thermodynamic limits, and is an order
parameter for the spontaneous breaking of Z(3) center symmetry.

We now define the corresponding susceptibilities. In the SU(3) gauge
theory, the Polyakov loop operator is complex. One can explore its fluctua-
tions along the longitudinal and transverse directions, as well as that of its
absolute value

T 3χL = N3
σ

N3
τ

[〈
(Lren

L )2
〉
− 〈Lren

L 〉2
]
, (4)

T 3χT = N3
σ

N3
τ

[〈
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T )2
〉
− 〈Lren

T 〉2
]
, (5)

T 3χA = N3
σ

N3
τ

(〈
|Lren|2

〉
− 〈|Lren|〉2

)
, (6)

where LL = Re(L̃) and LT = Im(L̃). Here, we have introduced the Z(3)-
transformed Polyakov loop, L̃ = Le2πni/3, with n = 0,±1. The phase of the
transformation is chosen such that the transformed Polyakov loop is located
in the main sector, defined by −π/3 < arg(L̃) < π/3.
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We note the factor of N−3
τ in defining the various susceptibilities. This

is required to formulate the quantities in the continuum. It is completely
analogous to the standard procedure of multiplying factor ofN4

τ in extracting
the continuous free energy density f/T 4 on the lattice [10]. Our lattice
results for these susceptibilities are collected in Fig. 1.
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Fig. 1. The temperature dependence of the modulus of renormalized Polyakov loop
and its susceptibilities in the SU(3) pure gauge theory. The lines are model results
discussed in Sec. 3.

Many features of the susceptibilities can be interpreted by Z(3) center
symmetry and properties of Polyakov loop distribution function [11]. One
quantity of interest to study deconfinement is the relative strength of trans-
verse to longitudinal susceptibility, i.e. RT = χT/χL.

Deep in the confining region, we find that χL ≈ χT. This is naturally
explained by the restriction of symmetry. As the vacuum is Z(3)-symmetric
below the critical temperature Tc, the expectation value of any symmetry
breaking operator must vanish. In particular,

V

(〈
L̃2
〉
−
〈
L̃
〉2)

= χL − χT = 0 . (7)

It follows that χL = χT in the confining phase.
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This simple observation defies any perturbative treatment of the correla-
tion functions. From the perturbative point of view, longitudinal and trans-
verse correlators are given by two and three gluon exchange respectively [12].
The lattice results, on the contrary, suggest that they are determined by the
same non-perturbative scale. There are some evidences that such a long
distance scale is set by the effective string tension [13]. Further study to
sort out their relations is underway.

At high temperatures, Z(3) symmetry is spontaneously broken and we
observe χL � χT. The fact that they are distinct can be interpreted as a
signal for deconfinement. Their relative sizes, however, are not restricted by
symmetry. What can be inferred from the data is that correlation function of
the transverse (imaginary) part of the Polyakov loop is more heavily screened
than that of the longitudinal (real) direction in the deconfined medium. This
aspect of screening property has been confirmed by other lattice group [14].
We note, however, that a residual Nτ dependence remains in our results.
Therefore, we cannot yet draw any firm conclusions about the continuum
extrapolation of RT.

Further work is needed for the physical interpretations of these observ-
ables, and to analyze in detail the systematic uncertainties involved in ex-
tracting these quantities.

3. Effective models for the Polyakov loop

Effective potentials, with quarks and Polyakov loop as degrees of free-
dom, have been constructed to describe QCD thermodynamics [15–20]. Many
of these models have their parameters tuned to match the lattice results on
thermodynamic pressure and Polyakov loop. Fluctuation effects, on the
other hand, have yet to be included. The new susceptibility data here can
help to better constrain these seemingly arbitrary model parameters [21].

We focus first on the most commonly used Polyakov loop models: the
polynomial [15] and the logarithmic potential [16], the latter imposes the
restriction of SU(3) Haar measure. While both models by construction can
describe the lattice data on equation of state and Polyakov loop, they predict
very different results for the susceptibilities. In particular, the polynomial
model asserts RT > 1 for T > Tc, while the logarithmic model gives RT < 1.
In this regard, the lattice data presented here clearly prefers the latter. This
is also in line with theoretical expectation: latter model is preferred as it
restricts the Polyakov loop to the target region [17].

However, as seen from Fig. 1, the logarithmic model cannot reproduce
the susceptibilities quantitatively. For this, one needs to take the lattice
data on fluctuations into account. We consider the following Z(3)-symmetric
model
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U
(
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)
T 4

= −1
2a(T )L̄L+ b(T ) lnMH

(
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)
+1

2c(T )
(
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)
+ d(T )

(
L̄L
)2
, (8)

where MH is the SU(3) Haar measure, expressed by the Polyakov loop and
its complex conjugate as

MH = 1− 6L̄L+ 4
(
L3 + L̄3

)
− 3

(
L̄L
)2
. (9)

The restriction of Polyakov loop to the target region is naturally enforced
by this term.

The model parameters can be uniquely determined from the lattice data
on equation of state, expectation value of Polyakov loop, together with the
susceptibilities. Details of this model are discussed in Ref. [21].

Figure 2 shows that there is a satisfactory description of lattice results on
pressure and interaction measure, up to high temperatures. Our model pa-
rameters are tuned to describe the most recent [7], rather than previous [8],
lattice data on the thermodynamic pressure. This explains the small differ-
ences between model results.
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Fig. 2. (Color online) Left-hand figure: Lattice QCD data for thermodynamic pres-
sure obtained in the SU(3) gauge theory. The points are from Ref. [7], whereas the
gray/green line is the parametrization of lattice data from Ref. [8]. The black
and the dashed lines are obtained in the Polyakov loop models introduced in
Sec. 3. Right-hand figure: As in the left-hand figure but for the interaction measure
(ε− 3P )/T 4, where ε is the energy density.

The essential distinction between the two models lies in the prediction
for Polyakov loop fluctuations. Figure 1 shows that both the longitudinal
and the transverse susceptibilities are well reproduced by the new model,
while the logarithmic model underestimates both of them.
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The model developed here is open to a more realistic effective description
of QCD thermodynamics with quarks.

4. Conclusions

The new lattice results on Polyakov susceptibilities allow us to probe
deeper into the deconfinement transition. The observables show a narrow
width extending to about 1.2 Tc. They are sensitive to the spontaneous
breaking of Z(3) center symmetry and can reflect screening properties of the
deconfined medium.

Preliminary results for the ratios of susceptibilities are obtained in (2+1)-
flavor lattice QCD simulations [21]. In particular, the value of RT in the
high temperature phase deviates substantially from the pure gauge limit.
For this, there is as yet no good theoretical understanding. An exploratory
first step would be to include a small explicit breaking term in the pure glue
potential and study how the picture changes from the pure gauge theory.

On the lattice, more work is needed for the robust extractions of these
gluonic correlation functions, as well as for the detailed understanding of
their systematic uncertainties.
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