
Vol. 7 (2014) Acta Physica Polonica B Proceedings Supplement No 2

ETOS — DISCRETE EVENT SIMULATION
FRAMEWORK FOCUSED ON EASIER

TEAM COOPERATION∗

Jiří Fišer, Jiří Škvára

Faculty of Science, J.E. Purkinje University in Usti nad Labem
400 96 Usti nad Labem, Czech Republic

(Received March 25, 2014)

The leading tool for event based discrete simulation in Python program-
ming language is SimPy. The SimPy supports all simulation primitives and
efficiently utilizes high level Python constructs. Unfortunately, SimPy’s sim-
ulation processes have to be implemented as one coroutine i.e. in a single
code unit. This solution is sufficient for simple simulations but totally inap-
propriate for large teams and more complex problems. Our SimPy extension
ETOS makes possible separation of roles in simulation teams and simplify
description of simulation. The simulation is represented as a group of XML
nodes and is built from simpler Python constructs — entities. The entity is
implemented as a Python class using SimPy primitives and specialized sup-
port of value context (i.e. random and time-dependant values relative to
simulation, a process or to entity processing). The entities provide elemen-
tary control flow constructs, versatile simulation objects and elementary
operations of simulated models. The entities are also responsible for a data
collecting. The paper describes hierarchy of basic entities of ETOS model
and it also covers case study of framework including annotated Python and
XML source codes.

DOI:10.5506/APhysPolBSupp.7.271
PACS numbers: 07.05.Tp, 89.20.Ff, 07.05.Bx

1. Introduction

Two years ago, we have started participating in a project which deals
with simulation of e-cars traffic. Therefore, we prepared several event-based
discrete simulations [1].

These simulations were focused on behavior of e-car in relatively long
term scale (weeks and more) and the main goal is an optimization of e-car
external facilities (especially charging station) in the world of resource

∗ Presented at the Summer Solstice 2013 International Conference on Discrete Models
of Complex Systems, Warszawa, Poland, June 27–29, 2013.

(271)



272 J. Fišer, J. Škvára

competition. We have preferred event based systems which are based on
a program code (our students are primarily programmers), high level ap-
proach (our ideal is a domain specific language which are both specialized
and flexible), and open source implementation (the open source software is
not only free of charge but also it uses open and documented code). Existing
traffic simulation systems do not meet these requirements (especially ad hoc
systems implemented on very low level in C++ or Java) or complex products
with huge libraries (but not with e-cas oriented support).

Finally, we have chosen SimPy as the simulation framework because
Python language (the foundation of SimPy) is part of our bachelor curricu-
lum of informatics and Python is relatively popular among our students
and teachers. We also use Python and its mathematical packages NumPy
and matplotlib in our mathematical courses as an alternative to commercial
products for numerical analysis.

The SimPy itself has relatively clear design and its complexity is reason-
able for our students. It supports all typical components of discrete-event
simulation as queues, shared resources or signals. The SimPy also shares
process oriented approach with other modern simulation frameworks. Last
but not least, SimPy is open source project and its documentation is (for
relatively small open-source project) excellent [2] (basic ideas of Simpy are
presented also in [3]).

Unfortunately, the design of SimPy processes makes a cooperation on
larger projects almost impossible (even on the scale of several students and
teachers). SimPy processes (coroutines) are based on Python generators [4],
which are primarily designed as iterator providers. The generators are not
based on low-level continuation-like primitives (as, for example, continulets
of PyPy [5]) and, therefore, they do not support an unrestricted dispatching
among coroutines. The main dispatcher (denoted as trampoline) has to
be located on top of all active coroutines and every dispatch request of
coroutine at any level must be propagated through all parent coroutines to
the trampoline by process which is denoted as re-yielding.

The main implication is obvious — the nested coroutines are supported
only by mean of complex support code which iterates over sub-generators
and passes flow of control to the calling coroutine. This supporting code
has to handle all situation including several types of exceptions. Unfor-
tunately, some exception in iterators are not exceptional but they arises
during normal processing, e.g. StopIteration signalizing iterator’s exhaust-
ing or GeneratorExit thrown after a leaving of nested iterators. Therefore
this code, which is complex and fragile, has to be (manually) repeated in any
coroutine except leaf ones. This situation is slightly improved in Python 3.3
with yield-from constructs but the main constraints remain.



ETOS — Discrete Event Simulation Framework Focused on Easier . . . 273

Therefore, the code of a SimPy process is often packed in one huge corou-
tine. This has a lot of negative implications:

— developers share monolithic codes i.e. their cooperation is very difficult
and a separation of developer’s roles is almost unfeasible;

— the coroutine code is not robust because some recurring SimPy imple-
mentation patterns are both extremely error-prone and non-reusable
(e.g. reneging);

— the code is not extensible or stackable;

— the behavior of exceptions (including user defined) in SimPy is often
undefined or at least esoteric.

2. ETOS — design principles

We have considered two possible solutions: using a more abstract formal-
ism together with a high level framework (if possible, in Python) or design
and implementation of a new framework. The most perspective candidate
was Discrete Event System Specification (DEVS) [6], de facto standard for-
mal representation of discrete event simulation models (even with Python
implementation — DEVSimPy). Unfortunately, this formalism is relatively
complex and very different from SimPy. DEVSimPy also uses graphics user
interface, while we prefer textual representation by domain specific language.
Moreover, the documentation of DEVSimPy is almost non-existent.

Finally, we have chosen implementation of new framework on top of
SimPy that utilizes our know-how and makes possible early involvement of
our students.

The main design objective of our framework is separation of simulation
code to two basic levels of abstraction:

— Declarative description of parameters and behavior of simulated
objects by high level XML-like structured language;

— Procedural representation of basic actions by extended SimPy (that
is Python) code in the form of generator coroutines.

The framework should prefer declarative descriptions over a low level
SimPy code. The procedural code should be limited to concise, simple and
clear (co)routines which hide details of coroutine dispatching (even the yield-
ing constructs have to be simplified and clarified). This also makes possible
to reuse a repetitive code by means of an object oriented inheritance or even
by a metaprogramming.



274 J. Fišer, J. Škvára

The efficiency of the framework strongly depends on efficiency of SimPy.
Unfortunately, Python and especially SimPy are not systems focused on time
or memory efficiency [7]. Basic Python objects are represented by tens or
hundreds bytes, object creations need milliseconds and coroutine yieldings
are also relatively slow. Therefore, the framework should optimize object
creation by re-usability of auxiliary objects (only one instance of auxiliary
object per simulation) and minimize slow operations (especially multiple
re-yieldings, creations of coroutines).

The framework is designed with three main parts (see Fig. 1). The core
part is a transaction engine which extends SimPy processes (based on Python
generators). The simulation process (transaction in ETOS terminology) is
controlled by a declarative program that is read from XML documents by
parsers. The declarative program utilizes entities (i.e. instances of Python
classes which represent basic simulation activities, control flow of transac-
tions or they collect outputs of a simulation).

Fig. 1. Structure of ETOS framework.

The declarative notation is based on a more abstract domain specific
language (denoted as SIM-DSL). This notation unifies structured simula-
tion data with high-level transaction code. This unification is similar to
Lisp programming language with its homoiconicity. The SIM-DSL should
support hierarchical trees of nodes together with their complex attributes
and extended values including random numbers with specific probability
distribution and simple functions of simulation time. The SIM-DSL is repre-
sentable by XML or YAML (structural language with more compact syntax
than XML [8]).

The ETOS framework offers five concepts for end users (note: the names
of this concepts slightly differ from classical simulation nomenclature [9]).



ETOS — Discrete Event Simulation Framework Focused on Easier . . . 275

The top level concept is simulation which represents a global state of
simulated system, including shared resources or data collectors. The simula-
tion is represented by set of interlinked SIM-DSL documents and by instance
of class Etos.Simulation (derived from class SimPy.Simulation) in Python
code. ETOS supports multiple simulation instances that can be executed in
multiple Python threads or processes (e.g. in simple cluster based on Python
multiprocessing package [10]). We tested this approach in a small ad hoc
cluster of tens student notebooks connected by Wi-Fi network (alternative
approach see in [11]).

The second concept is actor. Actor represents a simulated object during
its lifetime (which can exceed the lifetime of process, i.e. actor may be
carried out by several processes). The simplest actors are only containers
of attributes and, therefore, they are representable only by a declarative
code in SIM-DSL. More sophisticated actors are implementable by Python’s
objects.

The transaction is actor’s carrier i.e. transaction simulates its lifetime
(or part of its lifetime). The transaction is represented by a cooperating
system of declarative (SIM-DSL) and procedural (Python) code. The declar-
ative code describes the high-level flow of control, the procedural one defines
the basic steps of simulations. The transactions in EOS can be nested. How-
ever, sub-transactions are only instruments for mapping one logical task to
several SimPy processes i.e. to several generator coroutines.

The entities are basic buildings blocks of ETOS program forming indi-
vidual executing steps in transactions. ETOS provides four types of entities:

1. simple activity of modeled object (end user entities),

2. entity which provides interface to shared SimPy services, e.g. shared
limited resources with waiting queues (parking, fuel stations),

3. control entities e.g. branching, loops, try blocks, etc.,

4. subtransactions.

The shared service entity manages shared objects which are referred
from two or more entities. This makes possible cooperation or competition
of several transaction on limited resources. The shared objects are identified
by common identifier of entity.

The extended values used by entities (in roles of parameters or states)
are encapsulated in special objects (we called them x-values). The main
characteristics of any x-value is its context. Random or time dependent
values of x-values are always related to explicit context. The ETOS uses
four types of contexts:



276 J. Fišer, J. Škvára

— simulation context
Time is relative to global simulation time, random values are generated
only once per simulation.

— actor’s context
Epoch of time is starting by the first transaction of this actor and
random value is generated only once per actor.

— transaction context
This auxiliary context is suitable for system with simple actors (1:1
mapping between actor and transaction). Only top level transactions
provide this context.

— entity context
Context of every instance of an action (e.g. new context in every iter-
ation of action in a loop).

3. Simplified example

The ETOS as an event-based system is suitable especially for simulation
of dynamic system with stochastic behavior (especially with randomly dis-
tributed time intervals) and with shared and limited resources (completion
for limited resources), e.g. queuing theory problems. We have used discrete
event-based simulations also for discrete-time Markov chains (results have
been presented in [12]) and Markov chains are representable by ETOS using
basic entities (e.g. withProbability constructs).

Currently, we are exploring potential of ETOS for simulation of multi-
agent system especially for process of formation of agent’s coalition (coop-
erating with Mashkov [13]). In this simulation, agents are represented by
ETOS actors (only part of agent real power should be simulated by ETOS
— timing and communication protocol during coalition formation).

Real multi-agent systems are (almost) strictly distributed system i.e.
there are not shared data in the system. Therefore, the natural representa-
tion of a multi-agent system does not contains shared (resource) objects and
the agents are represented by actors (and their transactions) which have to
communicate only by message passing. This model is supported by SimPy
(by communication via signals) and it is representable in ETOS (by two ad-
ditional entities and by embedded mechanism of transaction identification).

However, this model makes simulation of more complex multi-agent
systems very extensive and almost unmanageable (the process of success-
ful coalition formation requires hundreds of messages). Fortunately, some
central agents (managers) can be transformed to (complex) shared entities



ETOS — Discrete Event Simulation Framework Focused on Easier . . . 277

which (temporally) join several agents and they support inter-agent commu-
nication (directly because shared entities hold references to their temporary
clients).

Unfortunately, the standard shared entities of event-based discrete sys-
tems (resources, storages, and containers) in SimPy support only competitive
clients. On the other hand, the formation of coalitions in MAS is predom-
inantly a cooperative task and the design and implementation of a whole
new category of entities is necessary.

In the following example, we present simplified multiagent system, with
several agents and with one auxiliary shared entity — “barrier” in which
agent transactions wait for a formation attempt i.e. an attempt to form new
coalition (analogy of synchronization barrier). In this simplified example,
the attempt is the accomplishment of a certain number of waiting agents
(specified by per shared object basis). The lifetime of new coalition is spec-
ified by common (typically random) value (in more realistic scenarios, the
success and lifetime have to depend at least on a common goal and agent’s
predispositions).

SIM-XML code of simulation

<simulation>
<main_transaction>
<counted_loop count="100" sim:shared_objects="#shared">

<start_transaction> <!--start of independent transaction-->
<pause duration="logarithmic: {lambda : 60}">
<infinity_loop restartBy="fail">

<infinity_loop>
<barrier id="main"/>
<pause duration="a.taskLifeTime"/>
<with probability="0.01">

<!--repair-->
<pause duration="normal:{mu:’8m30s’ sigma:’2m’}"/>
<exception type="fail"/>

</with>
</infinity_loop>

</infinity_loop>
</start_transaction>

</counted_loop>
<main_transaction>
<shared>

<barrier id="main" size="10"/>
</shared>
</simulation>



278 J. Fišer, J. Škvára

The initial code is concentrated in main_transaction element (names of
transaction elements are arbitrary). Start_transaction entity inside counted
loop creates 100 agents transactions, which are controlled by embedded SIM-
DSL code. Agent’s life begins by random pause and continues in inner infinite
loop with two actions: agents enter barrier (waiting room) and after coalition
formation they process a task (represented by pause). This simple behavior
is slightly complicated by simulation of agent’s failures. With probability of
1% the inner loop is interrupted but after some repair period the agent is
restarted (by outer infinite loop).

The implementation of the barrier in Python is not trivial because it
does not use built-in resource managers and, therefore, it must synchronize
agents by signals. This fragile and error prone code has to be placed in each
auxiliary entity. We plan to move this code into lower levels of the ETOS
implementation by extension of yielding messages.

We are investigating two solutions:

1. Extension of SimPy engine. SimPy is an open source project but its
internals are underdocumented. Furthermore, the SimPy is a living
project and, in some versions, the internals have been completely
rewritten from scratch (including last major version from October
2013, we are in process of adapting of ETOS for this version).

2. An auxiliary adapter between the SimPy engine (trampoline) and ETOS
code, which translate extended messages to SimPy counterparts (using
especially sequences of SimPy signals). This solution has been partially
implemented for some simple shared entities but long term maintain-
ability requires a careful design of minimal set of elementary messages
supporting all agent’s demands (e.g. client entry points, awakening of
set of transactions etc.).

4. ETOS in practice

The ETOS has been used for several simulation of e-car traffic. For
this purpose, we have implemented library of specialized simulation entities
(e-cars, refuel stations with typical recharging characteristics, etc.). The
simulations were executed in clusters of notebooks and the results (collected
by checkpoints and gathered by parallel map construct provided by multi-
processing library). The data processing has been implemented by NumPy
framework and visualization has been supported by matplotlib library (2D
graphing library for Python). The matplotlib supports the creation of an-
imated objects and, therefore, it is possible to animate a simulation or a
gathering process.



ETOS — Discrete Event Simulation Framework Focused on Easier . . . 279

For example, Fig. 2 is a contour diagram of results of one from our
simulation. The actor of this simulation is an e-car which on daily basis
recharges at home (low-voltage charging) or in a shopping center (high-
voltage charging).

Fig. 2. Sample of simulation results.

The simulation is parameterized by number of charging stations (sock-
ets) in a shopping center parking place (x-axis) and with probability of a
shop visit (y-axis). The result quantity is a number of out-of-charge events
(the event is relatively rare — the 20000 car-days are simulated for every
combination of values).

The graph depicts two types of dependency. The first dependency (very
strong) is visible horizontally (especially on the top). The insufficient supply
of charging sockets significantly increases the probability of out-of-charge
event. The second result is more obscure, the higher probability of home
charging (which is more limited by circuit breakers) slightly increases the
probability of out-of-charge event (vertical transition on the right-hand side).

The separation of descriptive and procedural part of simulation and the
mapping of actions to several entity classes has made possible separation of
role in our simulations teams. Figure 3 illustrates estimated roles (in our
small teams some roles were shared).



280 J. Fišer, J. Škvára

Fig. 3. Team roles.

5. Conclusions

The ETOS framework is limited in this phase of development to relatively
simple simulations. The reason is obvious: the relatively small quantity of
more complex entities (the development in the first phase has been focused
on control and auxiliary entities). The most elaborated end-user entities en-
capsulate SimPy resources (including reneging and management of resource
queues) but there are a few of entities modeling more complex physical pro-
cesses or even more general actions.

Therefore, we are going to implement library for simulation based on
directed graphs. This library provides simple but powerful representation
of graphs (with support of weighted nodes and edges) and implements ba-
sic graph algorithms. This library should be integrated into ETOS by two
mechanisms:

— SIM-DSL representation of weighted directed or undirected graphs,

— simulation entities, which use graph for representation of input data
and graph algorithm for implementation of an action.

The design of ETOS optimizes memory and time usage but the opti-
mization of re-yielding is crucial because the every nested entity (e.g. loop,
branching, etc.) adds one level of indirect transfer of control to process of



ETOS — Discrete Event Simulation Framework Focused on Easier . . . 281

coroutine switching. The optimization has to find an equilibrium between
depth of re-yielding and number of instantiated sub-transactions. The ETOS
does not support an automatic optimization and manual one (here, the inclu-
sion of body of loop into new transaction element) is rather tricky, because
the ETOS does not provide a benchmarking information. We plan to for-
malize the impact of re-yieldings and instantiations of sub-transactions and
to implement an automatic refactoring of code.

This work was supported by grant from company Severočeské doly a.s.
Chomutov (http://www.sdas.cz).

REFERENCES

[1] J. Banks, The Future of Simulation, Information Technology for Engineering
& Manufacturing, 2000.

[2] K. Mueller, T. Vignaux, O. Luensdorf, S. Scherfke, Documentation for
SimPy Version 2.3b1., http://simpy.readthedocs.org/en/latest/
api_reference/index.html, December 2013.

[3] K. Mueller, T. Vignaux, SimPy: Simulating Systems in Python,
ONLamp.com, Python DevCenter, 2003.

[4] G. Van Rossum, P.J. Eby, PEP 342 — Coroutines via Enhanced Generators,
http://www.python.org/dev/peps/pep-0342/, May 10, 2005.

[5] PyPy 2.1.0 Documentation. Application-level Stackless Features, The PyPy
Project, http://doc.pypy.org/en/latest/stackless.html,
December 2013.

[6] B.P. Zeigler, Proceedings of the IEEE 77, 72 (1989).
[7] E. Weingartner, H. Vom Lehn, K. Wehrle, A Performance Comparison of

Recent Network Simulators, IEEE International Conference on
Communications, 2009, pp. 1–5.

[8] O. Ben-Kiki, C. Evans, B. Ingerson, YAML Ain’t Markup Language
(YAML)(tm), Version 1.1, Working Draft 2008-05, 11, 2001.

[9] J. Banks, Discrete-event System Simulation, Pearson Prentice Hall, 2005,
ISBN 9780131446793.

[10] Documentation of the Python Standard Library, Multiprocessing —
Process-based Parallelism, Python Software Foundation,
http://docs.python.org/3/library/multiprocessing.html, August 17,
2013.

[11] V. Castillo, Parallel Simulations of Manufacturing Processing Using Simpy, a
Python-based Discrete Event Simulation Tool, Proceedings of the Winter
Simulation Conference, 2006, p. 2294.

[12] V. Mashkov, J. Fišer, Generic Model for Application of Probabilistic
Algorithms for System Self-diagnosis, Proceedings of ISDMCI2010
International Conference, Ukraine, 2010, pp. 215–218.

[13] V. Mashkov, J. Fišer, J. Appl. Comput. Sci. 18, 19 (2010).

http://dx.doi.org/10.1109/5.21071

	1 Introduction
	2 ETOS — design principles
	3 Simplified example
	4 ETOS in practice
	5 Conclusions

