
Vol. 7 (2014) Acta Physica Polonica B Proceedings Supplement No 2

PARTICLE ALIGNMENT BY MOVING AGENTS∗

Rolf Hoffmann

Technische Universität Darmstadt, FG Rechnerarchitektur
Hochschulstr. 10, 64289 Darmstadt, Germany
hoffmann@ra.informatik.tu-darmstadt.de

(Received March 25, 2014)

Initially, a 2D field is given that contains particles with randomly dis-
tributed spins (colors, orientations). Four different spins are assumed. The
vector sum of all spins can be interpreted as a magnetic field (magnetiza-
tion). The task is to align the particles by moving agents into the color
which is in the majority at the beginning. First, the capabilities of the
agents (actions, inputs, number of control states) were defined, because
they decide on how effective the task can be solved at all. The agents’
behavior is determined by an embedded finite state machine (FSM, algo-
rithm) with 4 states only. For a given 16× 16 field with 8 agents, an FSM
was evolved by a genetic procedure based on mutation. The best evolved
algorithm was successful for 91 out of 100 given initial fields. It turned out
that the reached color alignments were not stable. After the whole field has
been colored in one color, the agents proceeded to change the field into the
next color. Two experiments showed that the amplitude of the magnetiza-
tion decreased and the frequency increased when the number of agents was
increased. The whole system including the agents was modeled by cellular
automata. For the simulation of the system, the CA-w model (cellular au-
tomata with write access) was used in order to simplify the program and
speed up the simulation.

DOI:10.5506/APhysPolBSupp.7.291
PACS numbers: 07.05.Tp, 32.10.Dk, 85.70.–w, 41.50.+h

1. Introduction

Given is a field of cells with particles that may have four possible orien-
tations (spins, colors). The task is to align all the particles to the orientation
which is in the majority at the beginning. The sum of all spin vectors of the
whole field can be interpreted as a physical field, here called magnetization.

∗ Presented at the Summer Solstice 2013 International Conference on Discrete Models
of Complex Systems, Warszawa, Poland, June 27–29, 2013.

(291)

292 R. Hoffmann

The idea is to turn the particles by agents that are moving around. This task
can be interpreted in physics as the process of spin/dipole/nanotube align-
ment by the use of nano robots, an external magnetic field, or by beaming
certain focused waves or energy onto the cells of the array [1–3].

What is the benefit to use agents to solve this task? Generally speaking,
agents can behave very flexible because they have a certain intelligence.
Important properties that can be achieved by agents are:

— Scalable. The problem can be solved with a variable number of
agents, and faster or better with more agents.

— Tunable. Depending on the agent’s intelligence, the problem can be
solved faster or more effective (better quality of solutions).

— Adaptive. Similar problems can be solved by the same agents, e.g.
by changing the shape or size of the environment.

— Fault-tolerant. When obstacles are introduced or not all agents work
correctly, the problem can also be solved in an adequate way.

Because agents are very flexible, they can be employed to design, model,
analyze, simulate, and solve problems in the areas of complex systems, real
and artificial worlds, games, distributed algorithms and mathematical ques-
tions.

The here investigated alignment task is related to the density classifi-
cation task (DCT) [4, 5]. The DCT is to decide whether the initial con-
figuration contains more ones or zeros. It was shown that the 1D density
classification is a difficult problem and that it cannot be solved by uniform
cellular automata (CA) [6]. Problem solutions were proposed using non-
uniform or programmable CA [7].

Our problem is more complicated, because the number of colors is four.
Generally speaking, many variations of the problem are possible, e.g. by
changing the number of colors, the dimension of the field, the shape and
size of the field, or the boundary condition (cyclic, border). In addition, our
problem differs from the classical CA problem because it shall be solved by
moving agents. Agents can perceive the local environment and can perform
certain actions (change the color, move, turn). The behavior of our agents
shall be controlled by a finite state machine (FSM, control algorithm).

In former investigations, we have tried to find the best algorithms for
the Creature’s Exploration Problem [8], in which the agents have the task
to visit all empty cells in shortest time, and the All-to-All Communication
Task [10], in which each agent has to distribute its information to all the
others. The FSMs for these tasks have been evolved using, i.e., genetic algo-
rithms, genetic programming [11], sophisticated enumeration methods [12],

Particle Alignment by Moving Agents 293

and time-shuffling techniques [13]. In contrast to our first investigation of
the problem [14], we are trying now to solve the problem with 4 control
states only (instead of 10 before).

Other related work are a multi-agent system modeled in CA for image
processing [15], and modeling the agent’s behavior by an FSM with a re-
stricted number of states and the evaluation by enumeration [16].

2. The problem: alignment of particles

Given is a square field of N × N cells with a border. Each cell, except
the border cells, contains a particle with a certain color ∈ {0, 1, 2, 3}. The
colors correspond to the orientations of the particles (toN, toE, toS, toW).
The number of particles with a certain color i is Ei, all colors summing up
to N2 =

∑
Ei. At the beginning, at time t = 0, the colors are randomly

distributed. The goal is to align all particles to the color which has the high-
est frequency at the beginning (the major color). The alignment procedure
shall be performed by k ≤ N2 agents that move around in the field and are
able to change the particles’ colors. The objective is to find the behavior of
the agents that can solve the task. The capabilities of the agents shall be
limited, e.g. the number of control states, the action set, and the details of
the environment that can be perceived.

3. Modeling of the multi-agent-system by cellular automata

Standard in CA is that the cells are uniform, meaning that they are all
similar and obey to the same rule f . The rule changes the state of each cell
by taking into account the own cell’s state and the states of its neighbors

CellState(t+ 1) = f(CellState(t), NeighborsStates(t)) .

Nevertheless, the cell’s rule has to react on different situations, e.g.
whether there is an agent situated on a cell or not. Therefore, the cell’s
state is modeled as record comprising a type tag

(Type, Color, Agent) .

where
Type ∈ {Border, Particle, AgentAndParticle} ,

Agent = (Identifier,Direction,ControlState) .

When designing a system with agents (multi-agent system MAS), then
the capabilities of the agents have to be defined at the beginning before
designing or searching for the behavior of the agents to solve a given task.

294 R. Hoffmann

The main capabilities are: The perceivable inputs from the environment,
the actions an agent can perform, and the size of its memory (number of
possible control states, optionally additional data states).

In our system, an agent shall react on the following inputs in a certain
combination (input mapping Fig. 3, described later)

— the own color C of the cell the agent is situated on,

— the color in front CF (in viewing/moving direction),

— a border cell in front,

— the blocked situation/condition, caused either by a border, another
agent in front, or when another prior agent can move to the front cell
in case of a conflict. The inverse condition is called free.

An agent has a moving/viewing Direction = D ∈ {0, 1, 2, 3} ={toN,
toE, toS, toW }. Note that in the used model an agent cannot observe the
direction and control state of another agent in the neighborhood.

The actions that an agent shall be able to perform are:

— move: m ∈ {0, 1} = {wait, go} = {M0,M1},

— turn: turn ∈ {0, 1, 2, 3} = {T0, T1, T2, T3}. The new direction is
D(t+ 1) = (D(t) + turn) mod 4.

— rotate color: rotate ∈ {0, 1, 2} = {R0, R1, R2}. The new color is
C(t + 1) = (C(t) + rotate) mod 4 if rotate < 2, and is C(t + 1) =
(C(t)+ rotate+1) mod 4 if rotate = 2. This means that the color can
be rotated to the right (R1), to the left (R2), or can remain unchanged
(R0).

The move, turn and rotate actions can be performed simultaneously
(24 combinations). There is a constraint for the move action: when the
agent’s action is go and the situation is blocked, then the agent cannot move
and has to wait. In the case of a moving conflict, the agent with the lowest
identifier (ID = 0 . . . k − 1) gets priority. Instead of using the identifier
for prioritization, it would be possible to use other schemes, e.g. random
priority, or a cyclic priority with a fixed or space dependent base.

How can an agent move from A to B in the cellular automata (CA)
model? Two rules have to be performed, a delete-rule that deletes the agent
on A, and a copy-rule that copies the agent to B (Fig. 1). In the CA, both
rules have to compute the same blocking condition, this means a redun-
dant computation. In order to avoid this redundancy, a two-phase updating
scheme could be used (the first compute the moving condition, the second

Particle Alignment by Moving Agents 295

delete copy

CA: cell A deletes agent,

cell B copies agent from A

A B A Bagent

CA-w: cell A deletes agent

and copies it to B

delete & copydelete copy

CA: cell A deletes agent,

cell B copies agent from A

A B A Bagent

CA-w: cell A deletes agent

and copies it to B

delete & copy

Fig. 1. In the CA model, cell A deletes the agent and cell B copies it. In the CA-w
model, cell A is deleting and copying the agent.

use it in cell A and B), or use the cellular automata with write-access model
(CA-w) [17, 18]. When using the CA-w model, the moving condition is com-
puted by cell A, and if it is true, A applies a rule that deletes the agents on A
and copies it to B. Therefore, the CA-w model makes it easier to describe
and simulate systems with moving particles. The simulation program was
implemented by the CA-w model, although it is possible to implement the
system in standard CA with redundant computation.

The behavior of an agent shall be determined by an embedded finite
state control automaton (FSM) (Fig. 2). We also formulate that an agent
has/obeys to a certain (control) algorithm. Each CA cell contains an FSM
which is active when an agent is situated on it. The FSM contains a state
table (also called next state/output table). Outputs are the actions (move,
turn, rotate) and the next control state. Inputs are the control state and the
relevant input situations x. The input mapping reduces all possible input
combinations of (border, blocked, color, front color) to an index x ∈ X =
{0, 1, . . . , |X|−1} that is used in combination with the control state to select

input

mapping

state table

border

blocked

color

front color

+ +

Control State

turn

move

rotate

DirectionColor

nextstate

x

input

mapping

state table

border

blocked

color

front color

border

blocked

color

front color

+ +

Control State

turn

move

rotate

DirectionColor

nextstate

x

Fig. 2. Finite state machine (FSM). The state table define the next control state,
the rotation of the color, the agent’s new direction, and whether to move or not.

296 R. Hoffmann

the actual line of the state table. The used input mapping is shown in Fig. 3.
If the situation is free, the index x is the difference of the color in front and
the own color: x = CF−C mod 4. If the situation is blocked by a border cell
in front, then x = 4. If the blocking is caused by another agent in front, or
a prior agent in the case of a conflict, then the own color is directly mapped
to the index with an offset x = C + 5.

x address input of

state table

free front color CF –

own color C

CF – C = 0 0

CF – C = 1 1

CF – C = 2 2

CF – C = 3 3

blocked

border in front 4

agent in front

or no priority in

conflict situation

C = 0 5

C = 1 6

C = 2 7

C = 3 8

x address input of

state table

free front color CF –

own color C

CF – C = 0 0

CF – C = 1 1

CF – C = 2 2

CF – C = 3 3

blocked

border in front 4

agent in front

or no priority in

conflict situation

C = 0 5

C = 1 6

C = 2 7

C = 3 8

Fig. 3. Input mapping. The relevant input situations are mapped to a sequence of
addresses to be used as inputs for the state table.

It is possible to choose other input mappings, with less or more x values,
or other assignments, e.g. in the case of blocking, the direction of the agent
could be used (x = D + 5) instead of the color.

Note that the achievable system’s performance depends on the number
of agents and their capabilities, e.g. the observable inputs, the input map-
ping, the defined actions, the agent’s memory capacity, and the used control
algorithm.

4. Evolving the agent’s behavior by a genetic procedure

The ultimate objective is to find the optimal behavior on average for
all possible initial configurations. As we cannot optimize for all initial con-
figurations within a limited amount of computation time, we restrict our
objective to find a near optimal behavior of the agents’ behavior for a field
size of 16× 16 with 8 agents.

As the search space for different FSMs (algorithms) is very large, we are
not able to check all possible behaviors by enumeration. The number of
FSMs which can be coded by a state table is K = (|s||y|)(|s||x|), where |s| is
the number of control states, |x| is the number of different input values and
|y| is the number of different outputs. As the search space increases expo-
nentially, we use a genetic procedure in order to find the best behavior with

Particle Alignment by Moving Agents 297

reasonable computational cost. Even with a genetic approach the number
of states, inputs and outputs have to be kept low in order to find a good
solution in acceptable time.

A possible solution (genome of one individual in the genetic) corre-
sponds to the contents of the FSM’s state table (Fig. 4). A column j
is identified by a certain combination of (x, s). Each column j defines
(s′, y) = (nextstate, rotate,move, turn).

/x = 0\ /x = 1\ /x = 2\ /x = 3\ /x = 4\ /x = 5\ /x = 6\ /x = 7\ /x = 8\
control state 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
index j 0 1 2 3 4 5 6 7 8 91011 12133435 36171819 20212223 24252627 28293031 32333435

next state 0 0 3 0 2 1 0 2 2 0 1 1 3 2 0 0 3 0 1 3 1 2 3 2 1 1 1 2 0 1 2 1 3 3 0 1
rotate color 1 0 1 0 0 1 1 0 2 2 1 1 2 0 0 1 2 1 1 0 1 2 1 1 0 2 1 2 0 1 0 2 2 2 0 0
move 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1
turn 1 1 1 2 2 1 1 3 1 2 2 1 1 0 0 0 2 3 0 3 2 1 2 2 0 3 0 2 2 1 3 3 1 3 2 2

genom

/x = 0\ /x = 1\ /x = 2\ /x = 3\ /x = 4\ /x = 5\ /x = 6\ /x = 7\ /x = 8\
control state 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
index j 0 1 2 3 4 5 6 7 8 91011 12133435 36171819 20212223 24252627 28293031 32333435

next state 0 0 3 0 2 1 0 2 2 0 1 1 3 2 0 0 3 0 1 3 1 2 3 2 1 1 1 2 0 1 2 1 3 3 0 1
rotate color 1 0 1 0 0 1 1 0 2 2 1 1 2 0 0 1 2 1 1 0 1 2 1 1 0 2 1 2 0 1 0 2 2 2 0 0
move 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1
turn 1 1 1 2 2 1 1 3 1 2 2 1 1 0 0 0 2 3 0 3 2 1 2 2 0 3 0 2 2 1 3 3 1 3 2 2

genom

Fig. 4. State table of an FSM. It defines the behavior of an agent. The shown table
represents also the best found, near optimal topFSM.

The used genetic procedure per iteration is

1. A′ ← mutate(A),

2. (A,B)← deleteDuplicates(sort(A,A′, B)),

3. (A,B)← exchange(b, A,B).

One population of N individuals is stored in two lists (A, B) with N/2
individuals each. (Step 1) During each iteration N/2 offspring are produced
from list A by mutation. (Step 2) The union of the currentN individuals and
the N/2 offspring are sorted according to their fitness, duplicates are deleted
and the number of individuals is then reduced to the limit of N in the pool.
(Step 3) In order not to get stuck in local minima and to allow a certain
diversity in the gene pool, the first b individuals from B are exchanged with
the last b individuals from A. We used N = 20 and b = 3, therefore the
individuals 8, 9, 10 are exchanged with the individuals 11, 12, 13, when the
individuals are numbered from 1 to N .

We experimented also with the classical crossover/mutation method.
Then we found that mutation only gave us similar good results. There-
fore, we are using here only mutation. It is subject to further research
which heuristic is best to evolve state machines. In previous work [19], also
crossover and parallel populations were used, but at the moment we have no
reliable comparisons between different heuristics to evolve state machines.

An offspring is produced by modifying separately with a certain proba-
bility the nextstate action, the rotate color action, the move action, and the
turn action for each column j of the table

298 R. Hoffmann

nextstate ← nextstate + 1 mod Nstates with probability p1
rotate ← rotate + 1 mod Nrotate with probability p2
move ← move + 1 mod Nmove with probability p3
turn ← turn + 1 mod Nturn with probability p4 .

We restricted the number of states to Nstates = 4, and used Nrotate = 3,
Nmove = 2, and Nturn = 4. We tested different probabilities, and we
achieved good results with p1 = p2 = p3 = p4 = 35%.

The fitness of our multi-agent system is defined as the number of steps
which are necessary to align the particles, averaged over all given initial
configurations (color distribution, position and directions of the agents). As
the behavior of the whole system depends on the behavior of the agents, we
search for the agents’ FSM that can solve the problem successfully with a
minimum number of steps for a large number of initial configurations.

The fitness function F is evaluated by simulating the agent system with
a certain FSM on a given initial configuration

F (FSM, config) =

{
TimeSteps if successful within TimeLimit

HighConstant otherwise
.

(1)
Then the mean fitness F (FSM) is computed by averaging over the given

initial configurations in the set. The mean fitness F is then used to rank
and sort the FSMs. The parameters used were TimeLimit = 15, 000 and
HighConstant = 100, 000.

The genetic procedure starts with N = 20 random FSMs. Usually, there
is no FSM in the initial population that is successful. After some generations,
some successful FSMs are found. Then, after further generations, FSMs are
expected to be evolved that are completely successful on all or most of the
given initial configurations.

It turned out, that it is very difficult and time consuming to find good
solutions. Therefore, the genetic procedure was divided into several phases
with increasing difficulty. The major color is the color with the highest
frequency at the beginning. The minor colors are the other three colors at
the beginning. The frequency of the major color was set to P = N2/4+ 3u,
and the frequency of each minor color was set to Q = N2/4 − u. The
parameter u is a measure for the deviation from the case where each color
has the same frequency N2/4.

In each phase, 4w initial fields were used with the following initial color
distribution: w fields with (E0, E1, E2, E3) = (P,Q,Q,Q), w fields with
(Q,P,Q,Q), w fields with (Q, Q, P , Q), w fields with (Q, Q, Q, P).

Particle Alignment by Moving Agents 299

In the first phase, 4 initial configurations with increasing difficulty (sub-
phases with decreasing parameter u) were used, (w, u) = (1, 40), (1, 20),
(1, 10), (1, 5), (1, 3). In the second phase, 20 initial configurations with
decreasing u were used, (w, u) = (5, 10), (5, 5), (5, 3). In the third phase, 100
initial configurations with decreasing u were used, (w, u) = (25, 5), (25, 3).
At last, the frequency of the main color was 73, and the frequency of the
minor colors 61. At each optimization phase, the already evolved FSMs were
used as input for the next phase.

The overall computation time on a processor Intel Xeon QuadCore 2
GHz was around one week. The best found FSM (topFSM) is shown in
Fig. 4. The topFSM is able to align successfully 91 fields out of 100 within
the given time limit of 15,000 (Fig. 5). Compared to the previously found
FSM with 10 states [14], the now found FSM is equally successful but needs
only 4 states. It should be noticed that the alignment is not necessarily
stable (stationary) but temporary. This means that after or even before the
field is correctly aligned, it may be aligned to another color (see simulations
in the next section).

0

2000

4000

6000

8000

10000

12000

14000

16000

1 11 21 31 41 51 61 71 81 91

time t

for the

successful

alignment

4474

mean time (only the 91

successful were taken)

15 000

simulation time limit

field number (1..100)

Fig. 5. Alignment time. 91 fields out of 100 were successful within the time limit
of 15,000.

Programming Details. The implementation language was Object Pascal
(Free Pascal) under the development platform Lazarus. The main programs
are the optimizer (genetic procedure) P1 and the simulator P2. P1 and
P2 each consists of around 2000 lines of code, where around 1200 lines are
identical. Small additional programs are used to generate an initial set of

300 R. Hoffmann

FSMs, and the training and test field configurations. Most of the parameters
are easily changeable because they are stored in parameter files that can be
modified by a text editor. Output of the simulation runs are ASCII text
files. These files can be translated and compacted to a simple byte format,
which can be read and visualized by a separate tool written in JAVA.

The FSMs are programmed as arrays with index addressing. Thereby, a
fast access to the actions is guaranteed.

The optimizer is organized by an inner FOR-loop (T time steps) for the
simulation, enclosed by three nested FOR-loops. The number MAXgenera-
tion of optimizations varied for the different runs, between 10 and 500.

empty -> A’
FOR generation 1 .. MAXgeneration do

FOR each fsm(j) in the set AB of FSMs
FOR each given field(i)

FOR T=0 to Time_Limit
simulate time step for (field(i), fsm(j))
T+1 -> T
break loop if (field aligned)

ENDFOR time-step
store simulation time T(j,i)

ENDFOR field
ENDFOR fsm

compute Fitness for each fsm, average T over all fields
sort_according_to_Fitness(AB,A’)
delete_duplicates -> AB
exchange some FSMs from second half of B with first half of A
mutate(A)-> A’

ENDFOR generation

5. Simulations

The effect of aligning the particles by the agents using the evolved
topFSM is demonstrated by different simulations. The first simulation on
the initial field (Fig. 6) is displayed in Fig. 7. At t = 0, the major color is 0
(73 times). Then at t = 953, color 1 is most frequent (146), then at t = 1173
color 2 is most frequent (146), and at last at t = 2070, the whole field is
aligned to the color 0.

In order to get more insight about the time evolution of the alignment,
a phase diagram of the total magnetization and the time evolution of the
magnetic field were used. Abstracting from the real physics, it was assumed
that the colors represent magnetic spins with four possible directions. The

Particle Alignment by Moving Agents 301

Fig. 6. Initial configuration at time t = 0. Field 1 with agents (left), colors (right).

Fig. 7. Simulation of the alignment to the major color 0 by eight agents with
topFSM on field 1.

whole magnetic field (magnetization M) shall be given by the sum of all the
spin vectors in the field. The x/y-component of M is called Mx resp. My,
where

M = Mxux +Myuy ,

where the components can be determined by the number Ei of the spins:

Mx = E1 − E3 , My = E0 − E2 .

The phase diagram represents the time evolution of the magnetization
(vector of the magnetic field), or the relation (Mx(t),My(t)).

For the initial field (Fig. 6) and using 8 agents with the topFSM, the
phase diagram of the magnetization and their components are shown in
Fig. 8. At t = 0, the magnetization points slightly to the North, then
increasingly to the South, to the West, to the North again, then to the West

302 R. Hoffmann

(point A, all spins are aligned), and finally to the North (the target point B,
all spins are aligned). And after that, the magnetization is not stable, it is
circulating. The original goal was to reach the point B directly as a fix point,
and not on an orbit. But we were not able to reach this goal with the limited
capabilities of the agents. Nevertheless, the result was interesting because
the target point was reached on an orbit in 91% of the test cases. If the task
of the agents would have been to produce an oscillating magnetization, then
the agents had been very successful.

Fig. 8. Phase diagram of the total magnetization (left) and time evolution of the
magnetization components Mx and My (right). First all spins are aligned to East
(point A), then at time 2070 all spins are aligned to North (point B). At the
beginning, the major color was 0 (toNorth). Field size 16× 16, 8 agents.

There were two other experiments performed in which the number of
agents were increased in order to test for scalability. From other tasks with
agents we know that often the task is solved faster and also successfully with
more agents. When using 16 agents on the same initial field and the same
topFSM (Fig. 9), the magnetization is also oscillating but with a higher
frequency. The highest reached amplitude that was before 256, was now
max(|Mx|, |My|) = 254.

When using 256 agents, meaning that the system is fully packed with
agents (Fig. 10), the frequency of the oscillations was even higher and the
amplitude lower (175). The shape of the Mx and My signals appear as
polygons with small random variations.

These two experiments have shown that agents may be used to generate
oscillating signals with a certain shape and with some random variations.
Thus other FSMs for agents could be evolved that are optimized to produce
special formed signals, like sinus waves or random noise.

Particle Alignment by Moving Agents 303

Fig. 9. Experiment with 16 agents. Phase diagram of the magnetization (left) and
time evolution of their components (right). The generated signals are oscillating,
their shapes and amplitudes are noisy.

Fig. 10. Experiment with 256 agents (fully packed). Phase diagram of the mag-
netization (left) and time evolution of their components (right). Now the signals’
amplitudes are lower but the frequency is highest.

6. Conclusion and future work

First the capabilities of the agents were defined, because they decide
on how effective the task can be solved. The defined agents can perform
24 actions, combinations of moving, turning and coloring. They can react
on 9 input situations, combinations of the own color, the color in front,
the own direction, and blocking cases. The agents’ behavior is determined
by an embedded finite state machine (FSM) with 4 states only. For a given
16×16 field with 8 agents, an FSM was evolved by a genetic procedure based

304 R. Hoffmann

on mutation, and the procedure was executed stepwise with an increasing
difficulty and an increasing number of test fields. The best evolved algorithm
can perform the task for 91 out of 100 given fields. The reached mean time
was 4,474 for the 91 successful fields. Although originally it was intended
to reach the target point directly as a fix point (stable maximum of the
total magnetization in the direction of the initial major color), it turned out
that the magnetization rotates, thereby passing the target point cyclically.
This means that the task could not be completely solved with the given
capabilities. It is an open question if there exists a 4-state algorithm, which
reaches the target point directly for a high percentage of initial fields and
does not generate a cyclic magnetization. The scalability (changing the
number of agents) was also tested using 16 and 256 agents. It turned out,
that by increasing the number of agents, the amplitude of the magnetization
decreases and the frequency of the oscillations increases.

Future work is aimed to find more powerful and more intelligent agents
that can solve the problem better or perfectly. It is also very interesting to
find agents that can produce oscillations of the magnetization with a certain
frequency and shape, or pseudo-random noise.

REFERENCES

[1] D. Shi et al., J. Appl. Phys. 97, 064312 (2005).
[2] M. Itoh, M. Takahira, T. Yatagai, Opt. Rev. 5, 55 (1998).
[3] Y. Jiang, T. Narushima, H. Okamoto, Nature Phys. 6, 1005 (2010).
[4] S. Verel, P. Collard, M. Tomassini, L. Vanneschi, Lect. Notes Comput. Sci.

4173, 258 (2006).
[5] P. Oliveira, Lect. Notes Comput. Sci. 8155, 1 (2013).
[6] M. Land, R.K. Belew, Phys. Rev. Lett. 74, 5148 (1995).
[7] S. Sahoo, P. Choudhury, A. Pal, arXiv:0902.2671 [nlin.CG].
[8] M. Halbach, R. Hoffmann, L. Both, Lect. Notes Comput. Sci. 4173, 571

(2006).
[9] P. Ediger, R. Hoffmann, Lect. Notes Comput. Sci. 5698, 182 (2009).
[10] R. Hoffmann, D. Désérable, Lect. Notes Comput. Sci. 7979, 316 (2013).
[11] M. Komann, P. Ediger, D. Fey, R. Hoffmann, Lect. Notes Comput. Sci.

5481, 280 (2009).
[12] M. Halbach, Algorithmen und Hardwarearchitekturen zur optimierten

Aufzählung von Automaten und deren Einsatz bei der Simulation
künstlicher Kreaturen, Dissertation Technische Universität Darmstadt, 2008.

[13] P. Ediger, R. Hoffmann, Evolving Hybrid Time-shuffled Behavior of Agents,
IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Ph.D. Forum (IPDPSW), 2010, pp. 1–8.

http://dx.doi.org/10.1063/1.1861143
http://dx.doi.org/10.1007/s10043-998-0055-3
http://dx.doi.org/10.1038/nphys1776
http://dx.doi.org/10.1007/11861201_31
http://dx.doi.org/10.1007/11861201_31
http://dx.doi.org/10.1007/978-3-642-40867-0_1
http://dx.doi.org/10.1103/PhysRevLett.74.5148
http://dx.doi.org/10.1007/11861201_66
http://dx.doi.org/10.1007/11861201_66
http://dx.doi.org/10.1007/978-3-642-03275-2_19
http://dx.doi.org/10.1007/978-3-642-39958-9_30
http://dx.doi.org/10.1007/978-3-642-01181-8_24
http://dx.doi.org/10.1007/978-3-642-01181-8_24

Particle Alignment by Moving Agents 305

[14] P. Ediger, R. Hoffmann, Alignment of Particles by Agents with Evolved
Behaviour, Workshop Innovative Rechnertechnologien, Nanotechnologien für
die IT: Juli 9–10, 2009, Helmut-Schmidt-Univ., Germany.

[15] M. Komann, A. Mainka, D. Fey, Lect. Notes Comput. Sci. 4671, 432 (2007).
[16] B. Mesot, E. Sanchez, C.-A. Peña, A. Perez-Uribe, SOS++: Finding Smart

Behaviors Using Learning and Evolution, Proc. of the 8th International
Conference on Artificial Life, pp. 264–273, 2002.

[17] R. Hoffmann, Acta Phys. Pol. B Proc. Suppl. 3, 347 (2010) .
[18] R. Hoffmann, Acta Phys. Pol. B Proc. Suppl. 4, 183 (2011).
[19] P. Ediger, Modellierung und Techniken zur Optimierung von

Multiagentensystemen in Zellularen Automaten, Dissertation,
TU Darmstadt, Darmstadt, Germany, 2011.

http://dx.doi.org/10.1007/978-3-540-73940-1_43
http://www.actaphys.uj.edu.pl/sup3/abs/s3p0347
http://dx.doi.org/10.5506/APhysPolBSupp.4.183

	1 Introduction
	2 The problem: alignment of particles
	3 Modeling of the multi-agent-system by cellular automata
	4 Evolving the agent's behavior by a genetic procedure
	5 Simulations
	6 Conclusion and future work

