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A set of N points is chosen randomly in a D-dimensional volume
V = aD, with periodic boundary conditions. For each point i, its distance
di is found to its nearest neighbour. Then, the maximal value is found,
dmax = max(di, i = 1, . . . , N). Our numerical calculations indicate that
when the density N/V = const., dmax scales with the linear system size as
d2max ∝ aφ, with φ = 0.24± 0.04 for D = 1, 2, 3, 4.
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1. Introduction

In our recent paper [1], the problem of penetration of a given area V
by deterministic robots, referred to as ants, has been considered. In that
model, ants could exchange information on areas they had been visited. New
scaling relations have been proposed for the time of penetration against the
number of ants N and the system size V = a2, where a was the linear size
of the system. In particular, the time T when all ants know the whole area
has been found to be proportional to V βρδ, where ρ = N/V was the ant
density. The related exponents β and δ have been found numerically as 0.69
and −0.4, respectively.

The aim of the present note is to verify the role of the spatial fluctua-
tions of the initial positions of ants in the value of β. Our question is as
follows: provided that ρ = const., the size dependence of T can be par-
tially attributed to the fact that some ants are initially farther from their
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neighbours. Then, those ants need more time to meet other ants and collect
the information from them. How, then, does the maximal distance dmax

between nearest neighbours depend on the area V ?
In the picture based on diffusion, an ant can be represented by a sphere of

radius r, and r2 increases linearly with time. Out of this sphere, the proba-
bility of meeting of the ant is zero. A meeting of two ants is then equivalent
with a collision of two spheres. The time T is expected to be dominated
by d2max. This picture is justified for D = 1 and perhaps for D = 2, because
in a low-dimensional space trajectories fill the spheres densely, but not for
D > 2. As we demonstrate below, the obtained scaling relation can be writ-
ten in a compact form, the same for D ≤ 2 and D > 2. The price paid for
this simplicity is a substitution of the difficult random walk problem by the
diffusion model.

We note that the relation d2max(V ) can be formulated in terms of the
probability distribution of an extremal value [2] of the distance between
random points [3]. This formulation should allow to get the mean of the
maximal distance to a nearest neighbours through the formalism of gen-
erating functions. Yet, the numerical procedure applied here seems much
simpler than the approach with use of special functions [3].

In the next section, we describe the simulation developed to get the
relation dmax(V ), and the numerical results for the dimensionality D = 1,
2, 3 and 4. Last section is devoted to discussion.

2. Simulation

The simulation is performed as follows. A D-dimensional area V = aD

with periodic boundary conditions is filled with N = ρV points of randomly
selected positions. For each point i = 1,. . . ,N , we find its distance di to its
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Fig. 1. The relation between d2max and the linear size a of the system, for the
dimensionality D = 1, 2, 3, 4 from bottom to top. Each point is an average over
10 runs.
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nearest neighbour. Next, we find the maximal value of di, denoted as dmax.
This is done for a varying with ρ = const., and for D = 1, 2, 3 and 4. The
number of points is taken as N = 100 aD.

The results are shown in Fig. 1. The obtained plot indicates the scaling
relation d2max ∝ aφ, with φ close to 0.24 for all investigated dimensionali-
ties D. The accuracy of φ is bounded by fitting error which varies from 0.02
to 0.04 for different dimensionalities.

3. Discussion

To compare the obtained scaling relation with the result T ∝ V β for
D = 2 [1], we substitute a = V 1/2. This gives d2max ∝ V 0.12. Provided that
the sphere area r2 ∝ t, as follows from the diffusion model, we get the time
T ∝ aφ = V 0.12. This exponent is clearly less than β = 0.69, obtained in [1].
As the ants are designed to omit their previous paths [1], an alternative
assumption could be done according to the Self Avoiding Walk model [4],
where for D = 2 the rule is r2 ∝ t3/2. Then we get T ∝ (r2)2/3 ∝ a2φ/3 =
V φ/3 = V 0.08, what is even farther from V β . This means that the observed
value of the exponent β cannot be attributed solely to the fluctuations of
the initial density of ants. For completeness, we may add that d2max ∝ ρ−2/D

for purely geometrical reasons.
The scaling relation d2max ∝ aφ, which appeared as a by-product of

the considerations of Search and Rescue robots in a labyrinth [1], can find
applications also in other areas. An example is a spatial set of sensors;
two sensors interact if their distance is not larger than a prescribed value
[5–7]. Yet, the distance in other than geometrical, high-dimensional space
can play the same role. Namely, in a network of time series of biological or
economic series of data [8] as points and their mutual correlations as bonds,
a least correlated signal in a network is equivalent to the maximally distant
point. There, the signal length is a counterpart of the space dimensional-
ity D, and the range of the signal — of the linear system size a. With this
interpretation, our results can be helpful to identify outliers in data.
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