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Ferromagnetic and glassy phase transitions in p-spin models on scale-
free hypernetworks are investigated, with Ising spins located in the nodes
and p-spin exchange interactions corresponding to hyperedges. Monte Carlo
simulations show that ferromagnetic transition at non-zero temperature is
possible in such models which exhibits certain characteristics of the first-
order phase transition. However, the ground state is, in general, degenerate
and at low temperatures, depending on the network topology, the model
apart from the ferromagnetic state can stay in one of few or even infinitely
many disordered states. These states are degenerate with the ferromagnetic
one and have structure resembling that of a spin glass. The presence of the
first-order ferromagnetic transition and the degeneracy of the ground state
is confirmed by analytic calculations in the mean-field approximation. The
critical temperatures for the ferromagnetic transition obtained in the mean-
field approach and from numerical simulations are in reasonable agreement.
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1. Introduction

In the last fifteen years theory and applications of complex networks
have become an important topic in statistical physics [1, 2]. In particular,
dynamical systems on complex networks, with interacting units located in
the nodes and with the edges corresponding to interactions between pairs
of units, have attracted considerable attention [2, 3]. For example, order–
disorder phase transitions in the Ising model on scale-free (SF) networks
was studied both numerically [4] and theoretically in the mean field (MF)
approximation [5–9]. A possible generalization of the concept of networks

∗ Presented at the Summer Solstice 2013 International Conference on Discrete Models
of Complex Systems, Warszawa, Poland, June 27–29, 2013.

(335)



336 A. Krawiecki

are hypernetworks: in networks, pairs of nodes are connected by edges,
while in hypernetworks, groups of more than two nodes are connected by
hyperedges [10]. As in the case of networks, the topology of connections in
hypernetworks may be complex: e.g., SF hypernetworks are characterized by
distributions of hyperdegrees (number of hyperedges ki attached to a given
edge i) obeying a power scaling law P (ki) ∝ k−αi [11]. By analogy with
networks, complex hypernetworks offer the possibility to investigate many-
body interactions (corresponding to hyperedges) among units in the nodes.
As an example, ferromagnetic p-spin models without time-reversal symmetry
on certain SF hypernetworks (with hyperedges corresponding to exchange
p-spin interactions) were investigated by Monte Carlo (MC) simulations [12],
and signatures of the ferromagnetic as well as glassy phase transitions were
found. The purpose of this paper is to extend the study of Ref. [12] to
p-spin models on a broader class of SF hypernetworks, and to investigate the
thermodynamic properties of the above-mentioned phase transitions both
numerically and theoretically, using the MF approximation.

2. The model

A general Hamiltonian for the p-spin model with N two-state spins,
σi = ±1, i = 1, 2, . . . N , located in the nodes of a hypernetwork is

H = −〈k〉−1
∑

{i1,i2,...ip}

Ji1,i2,...ipσi1σi2 . . . σip , (1)

where 〈k〉 is the mean hyperdegree of the nodes and the summation runs
over all p-combinations (combinations of p indices without repetitions) from
the set of N node indices. The exchange integrals are assumed Ji1,i2,...ip =
JNi1,i2,...ip , J > 0, where Ni1,i2,...ip is the number of distinct hyperedges
connecting the nodes i1, i2, . . . ip (thus Ji1,i2,...ip = 0 if there are no such
hyperedges). It is assumed that the model at temperature T obeys the
Glauber thermal-bath dynamics, with the transition rates between two spin
configurations which differ by a single flip of one spin, e.g., that in the node i,
in the form

wi (σi) =
1

2

[
1− σi tanh

(
Ii
T

)]
, (2)

where
Ii =

J

〈k〉
∑

{j1,j2,...jp−1}

σj1σj2 . . . σjp−1 (3)

is a local field acting on the spin i, and the sum in Eq. (3) runs over all
different hyperedges attached to the node i.
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Multi-spin ring interactions contribute to the magnetic properties of solid
3He [13]. Models with all-to-all as well as short-range p-spin interactions
with quenched disorder were used in spin-glass theory [14–17]. The ferro-
magnetic models with p = 4 (the plaquette model) were considered on two-
and three-dimensional regular cubic and square lattices, and in the latter
case ferromagnetic and glassy phase transitions (possibly first-order) as well
as metastability were observed [18–22]. In this paper, ferromagnetic p-spin
models on complex hypernetworks are investigated.

As an example of complex hypernetworks, in this paper SF hypernet-
works will be considered. They can be constructed as evolving hypernet-
works using an extension of the algorithm proposed in Ref. [11]. The al-
gorithm starts with p nodes connected by mh hyperedges, each of which
connects all initial p nodes. In each step of the construction, m new nodes
are added to the hypernetwork (1 ≤ m < p) which are then connected by
mh new hyperedges to p −m randomly chosen existing nodes according to
the following preferential attachment rule: the probability to attach a new
hyperedge to the existing node i is proportional to the hyperdegree ki of this

node, pi = ki

(∑
j kj

)−1
, where the summation runs over all existing nodes.

The algorithm stops after a desired number N of nodes in the hypernetwork
is reached. In Ref. [11] only the case with mh = 1 and m = p − 1 was
considered, however, it is straightforward to generalize the result of Wang
et al. and to show that the distribution of hyperdegrees in the resulting
hypernetwork obeys a power scaling law, P (k) ∝ k−α, with the exponent
α = 1 + p

p−m which is independent of mh; in particular, α = p+ 1 = m+ 2

for m = p − 1. In contrast with the case studied in Ref. [11], the above-
mentioned extended algorithm allows multiple connections of the same nodes
with different hyperedges. Finally, the spins are placed in the nodes and the
hyperedges are treated as p-spin exchange interactions among the connected
nodes. In Ref. [12] p-spin models with p = 3 and mh = 1 were investigated
by means of MC simulations; here, the cases with p even and mh ≥ 1 are
studied both numerically and theoretically in the MF approximation.

3. Mean field approximation

3.1. General considerations

The Master equation for the probability that at time t the system is in
the spin configuration (σ1, σ2, . . . σN ) is
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d

dt
P (σ1, σ2, . . . , σj , . . . σN ; t) =

−
N∑
j=1

wj (σj)P (σ1, σ2, . . . , σj , . . . σN ; t)

+
N∑
j=1

wj (−σj)P (σ1, σ2, . . . ,−σj , . . . σN ; t) . (4)

Multiplying both sides of Eq. (4) by σi and performing an ensemble average,
denoted by 〈 〉, yields

d〈σi〉
dt

= −〈σi〉+
〈
tanh

(
Ii
T

)〉
. (5)

As in the case of the Ising model on complex networks [5–9], the order
parameter for the p-spin model on a hypernetwork is weighted magnetiza-
tion S = (N〈k〉)−1

∑N
i=1 kiσi. Its stationary value as well as the critical

temperature for the possible order–disorder transition can be evaluated in
the MF approximation. For this purpose, let us treat the spins σi linked
by each hyperedge as independent random variables and approximate them
with their average values 〈σi〉. Then, the order parameter S and the local
field Ii can be approximated by their MF values

S ≈ 〈S〉 = (N〈k〉)−1
N∑
i=1

ki〈σi〉 , (6)

Ii ≈ 〈Ii〉 =
J

〈k〉
∑

{j1,j2,...jp−1}

〈σj1〉〈σj2〉 . . . 〈σjp−1〉 . (7)

In analogy with the case of networks, the nodes of the hypernetwork can
be divided into classes according to their hyperdegrees k [5, 6]. Then, the
average values of all spins located in the nodes belonging to the class with
hyperdegree k are assumed equal and denoted as 〈σk〉. Under such assump-
tions, the sum over the nodes of the hypernetwork can be replaced by a sum
over the classes of nodes with different hyperdegrees. For example, the MF
value of the order parameter becomes

〈S〉 =
kmax∑
k=kmin

kpk
〈k〉
〈σk〉 , (8)
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where kmin and kmax are the minimum and maximum hyperdegrees of nodes,
respectively. Similarly, taking into account that the probability that a node i
is linked by a hyperedge to a node with hyperdegree k is kpk/

∑
l lpl =

kpk/〈k〉 the MF value of the local field in Eq. (3) is

〈Ii〉 =
Jki
〈k〉

kmax∑
k1,k2,...,kp−1=kmin

k1pk1
〈k〉
〈σk1〉

k2pk2
〈k〉
〈σk2〉 . . .

kp−1pkp−1

〈k〉
〈σkp−1〉

=
Jki
〈k〉
〈S〉p−1 . (9)

Multiplying both sides of Eq. (5) by ki, performing the sum over all nodes
and replacing it by the sum over all classes of nodes as in Eq. (8), the
equation for the continuous-time dynamics of 〈S〉 is finally obtained

d〈S〉
dt

= −〈S〉+
kmax∑
k=kmin

kpk
〈k〉

tanh

(
Jk〈S〉p−1

〈k〉T

)
, (10)

and the stable fixed points 〈S〉0 of Eq. (10) correspond to the values of the
order parameter in the stable (disordered or ordered) phases of the model
at given temperature T .

3.2. Application to p-spin models on scale-free hypernetworks

Henceforth we will focus on SF hypernetworks constructed as described
in Sec. 2, so that kmin = mh. Let us assume that the hyperdegree k is a
continuous rather than discrete variable, so that the distribution of node
hyperdegrees is pk → p(k) = Ak−α, where A is a normalization constant
which can be obtained from the condition

∫ kmax

mh
Ak−αdk = 1. For a fi-

nite number of nodes N , the maximum hyperdegree kmax can be estimated
from the condition

∫∞
kmax

Ak−αdk = N−1 [7] (then, it will be practically
impossible to find a node with hyperdegree k > kmax). These two condi-
tions yield kmax = mh(N + 1)

1
α−1 and A = (α − 1)mα−1

h

(
1 +N−1

)
, thus

〈k〉 =
∫ kmax

mh
Ak−α+1dk = A

α−2
(
m−α+2

h − k−α+2
max

)
. The equilibria 〈S〉0 of

Eq. (10) are, after replacing summation with integration, solutions of the
equation

〈S〉0 =
A

〈k〉

kmax∫
mh

k−α+1 tanh

(
Jk〈S〉p−10

〈k〉T

)
dk . (11)

This result generalizes that, for networks with p = 2 [5, 6].
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For p ≥ 2 and high T , the only solution of Eq. (11) is 〈S〉0 = 0, cor-
responding to disordered (paramagnetic) phase (Fig. 1). For p = 2, this
solution becomes unstable, and two symmetric non-zero solutions appear at
T < Tc = J〈k2〉/〈k〉2, where 〈k2〉 is the second moment of the distribution
of the node hyperdegrees, corresponding to the ferromagnetic phase [5–9].
In contrast, for p > 2 the solution with 〈S〉0 = 0 is always stable and may
correspond to paramagnetic or glassy phases, depending on the temperature
(Fig. 1). Besides, there is a critical temperature Tc, which cannot be simply
expressed analytically, such that for T < Tc and p = 3, 5, 7 . . . there is one
stable solution with 〈S〉0 > 0, and for p = 4, 6, 8 . . . there are two symmetric
stable solutions ±〈S〉0, where 〈S〉0 > 0, corresponding to the ferromagnetic
phase (Fig. 1); the difference between the cases with p odd and even reflects
the lack of time-reversal symmetry in the Hamiltonian (1) for p odd (i.e.,
the two configurations with all spins flipped usually have different energy).
It can be seen that for p > 2 the MF approximation predicts first-order tran-
sition to the ferromagnetic state as the temperature is decreased (Fig. 1),
as in the case of p-spin models on regular three-dimensional lattices [18–22],
and that the ordered phase should coexist with a disordered (glassy) one
with 〈S〉0 = 0.

Fig. 1. Left-hand (straight line) and right-hand (curve) side of Eq. (11) as functions
of 〈S〉0 for N = 10000, p = 4, m = 2 (α = 3), mh = 2 and different inverse
temperatures β = T−1 (see the legend).

In order to qualitatively understand the result of Eq. (11), let us note that
for p > 2 the ground state of the system under consideration is, in general,
degenerate: apart from the ferromagnetic state, there are multiple disordered
(glassy) states with the same energy. In the case of mh = 1, m = 1, the
degeneracy of the ground state is equal to the number of different spin
configurations which minimize the energy of p spins coupled with a single
hyperedge. This is so because the sign of the spin in a newly added node σip
should be such that the product of spins in a newly created hyperedge is
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σi1σi2 . . . σip = +1, where the spins σi1 , σ2, . . ., σip−1 are fixed and belong
to the existing hyperedge; thus, only the configuration of p spins coupled
by the first hyperedge can be chosen out of several configurations which
minimize their energy (in particular, this can be the configuration with all
spins parallel, which leads to the ferromagnetic ground state of the system).
For mh = 1 and 2 ≤ m ≤ p − 1, the degeneracy of the ground state is
infinite in the thermodynamic limit, since there are several configurations
of spins σip−m+1 , σip−m+2 , . . ., σip in the newly added nodes for which the
product of spins in a newly created hyperedge is σi1σi2 . . . σip = +1, where
the spins σi1 , σ2, . . ., σip−m are fixed and belong to the existing hyperedge;
the ferromagnetic state is, of course, one of these ground states.

For mh > 1, the spins in the old nodes (early added and thus with
higher hyperdegrees) tend to align in parallel in the ground state. Other-
wise, the spins in the newly added nodes σip−m+1 , σip−m+2 , . . ., σip could
be frustrated, since they could be randomly linked with new hyperedges
to groups of p−m spins σ(j)i1 , σ(j)i2 , . . ., σ

(j)
ip−m

, j = 1, 2 . . .mh (connected
or not with the existing hyperedges) such that the product of spins is
σ
(j)
i1
σ
(j)
i2
. . . σ

(j)
ip−m

= ±1, depending on j, and it would be impossible to
choose one configuration of the spins in the newly added nodes such that
σ
(j)
i1
σ
(j)
i2
. . . σ

(j)
ip−m

σip−m+1 . . . σip = +1 for all j = 1, 2 . . .mh. As a result,
for m = 1 the only ground state is the ferromagnetic one. In contrast, for
2 ≤ m ≤ p− 1 at the last step of the construction process of the network it
is possible to add new spins σip−m+1 , σip−m+2 , . . ., σip to the hypernetwork
consisting of N − m spins in the ferromagnetic state (e.g., that with all
spins up) in such a way that not all new spins are parallel to the N −m old
ones, but the product of the new spins is σip−m+1σip−m+2 . . . σip = +1, thus
the energy of the system remains minimum. The latter argument applies to
most nodes with low hyperdegree, which form a significant part of the set
of nodes, since they are usually added at the end of the construction pro-
cess of the hypernetwork. Thus, the degeneracy of the ground state is only
partly lifted for mh > 1 and 2 ≤ m ≤ p− 1, and at low temperatures there
are stable glassy ground states characterized by a small value of the order
parameter, apart from the ferromagnetic state with |〈S〉0| ≈ 1. It should
be emphasised that in all cases the glassy ground states, though disordered,
have minimum energy and do not exhibit spin frustration.

4. Monte Carlo simulations

In order to study the possible phase transitions and their thermody-
namic nature in the system described by the Hamiltonian (1) using MC
simulations the dependence of the order parameter S, the susceptibility χS

and the fourth-order Binder cumulant B [23] are observed as functions of
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the temperature. The susceptibility is evaluated as

χS ∝ β(〈S2〉 − 〈S〉2) , (12)

where β = T−1, the brackets denote the time average over many MC sim-
ulation steps, and the bar denotes average over different realizations of the
hypernetwork. The presence of the phase transition is characterized by the
occurrence of the maximum of the curve χS vs. T at the critical tempera-
ture Tc. The Binder cumulant

B =
1

2

(
3− 〈S

4〉
〈S2〉

2
)

(13)

is a tool often used to characterize the order of the phase transition: for the
second-order transition B decreases monotonically from B = 1 at T = 0 to
B = 0 at T →∞ and is positive for any temperature, while for the first-order
transition it exhibits a sharp negative minimum at the temperature close to
the transition point. In all simulations ferromagnetic initial conditions with
σi = +1, i = 1, 2 . . . N were assumed to prefer transition to the ordered
state with decreasing temperature; however, due to high degeneracy of the
ground state in most cases, the system can also settle at one of the glassy
states characterized by small value of the order parameter S.

In Fig. 2 (a), (b) the dependence of S and χS on β is shown for a hypernet-
work with large N , p = 4, m = 1 and different mh. For mh = 2, 3 the order
parameter rises fast to S = 1 for β > βc ≈ 1.5, and there is a corresponding
sharp peak of the susceptibility. This indicates transition to ferromagnetic
state, which is the only ground state. Besides, for slightly smaller β there is
a region of slow increase of S, with a corresponding small maximum of χS.
The origin of this region, which occurs only for large enough N (Fig. 3 (a)),
is unclear: it may correspond to the appearance of partial ordering or glassy
transition in the system. For mh = 1, the order parameter increases slowly
with β, and only the small maximum of χS can be seen. This is probably
because the transition can be either to the ferromagnetic ground state or to
a degenerate glassy ground state. In Fig. 2 (c), (d) the dependence of S and
χS on β is shown for a hypernetwork with large N , p = 4, m = 3 and dif-
ferent mh. In this case, the ground state is degenerate for any mh, thus the
order parameter does not rise to unity. Moreover, the susceptibility exhibits
a peak only for mh > 1, indicating the presence of the phase transition.

In Fig. 3 (a), (b) the dependence of S and B on β is shown for hyper-
networks with increasing N , p = 4, mh = 3 and m = 1. For small N ,
the order parameter seems to rise discontinuously from zero at the critical
temperature, and the Binder cumulant has a negative minimum. However,
for larger N the above-mentioned region of slow increase of S appears, and
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Fig. 2. The order parameter S and the susceptibility χS vs. the inverse tempera-
ture β obtained from MC simulations of the p-spin models with p = 4, N = 10000

on different SF hypernetworks (see the legend).

the minimum of the cumulant B seems to disappear. Moreover, the curves
B vs. β do not cross at one (critical) value of temperature. Thus, in this
case the transition shows only certain signatures of the first-order transition,
as predicted by the MF theory, and its order cannot be definitively deter-
mined. The case with m = 2 is similar to that with m = 1 (not shown). In
Fig. 3 (c), (d) the dependence of S and B on β is shown for hypernetworks
with increasing N , p = 4, mh = 3 and m = 3. In this case, the transition
is rather second-order, as suggested by the monotonic dependence of the
Binder cumulant on temperature; the curves B vs. β for different N , again,
do not cross at one point.

In Fig. 4, the critical inverse temperatures βc obtained from MC simula-
tions (from the location of the maxima of the susceptibility χS) are compared
with those evaluated from Eq. (11) in the MF approximation. The agreement
between numerical and theoretical results is only qualitative. It should be
mentioned that quantitative discrepancy between the critical temperatures
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Fig. 3. The order parameter S and the Binder cumulant B vs. the inverse temper-
ature β obtained from MC simulations of the p-spin models with p = 4, mh = 3 on
SF hypernetworks with different m and N (see the legend).

for the ferromagnetic transition obtained from the MC simulations and in
the MF approximation is often observed in the Ising models on SF networks
[6–9]. The latter discrepancy is attributed to the correlations between node
degrees in the network. In the case of p-spin models on hypernetworks, an-
other source of quantitative discrepancy is the approximation of independent
spins in Eq. (7).

Another interesting point is that Eq. (11) predicts the decrease of βc (i.e.,
increase of Tc) with N in models on SF hypernetworks with the exponent
2 < α < 3 in the power scaling law for the hyperdegree distribution (the
cases with m = 1 in Fig. 4). This is, again, in analogy with the Ising model
on SF networks [4–9]. Similar dependence of βc on N is obtained in some
cases from MC simulations (the case with m = 1, mh = 3 in Fig. 4 (b)), but
is probably absent in other cases (the case withm = 1, mh = 2 in Fig. 4 (a)).
On the other hand, from the MC simulations weak dependence of βc on N



Phase Transitions in the p-spin Models on Scale-free Hypernetworks 345

Fig. 4. The inverse critical temperature of the p-spin model βc obtained from
MC simulations (filled symbols) and MF approximation (empty symbols) vs. the
number of nodes N in the hypernetwork for p = 4,m = 1 (circles),m = 2 (squares),
m = 3 (triangles), and (a) mh = 2, (b) mh = 3.

can be obtained also in models on SF hypernetworks with α > 3 (the cases
with m = 3 in Fig. 4 (a), (b)). The dependence of Tc on the network size
can be responsible for the lack of the crossing point of the curves B vs. β
for different N in Fig. 3 (b), (d).

5. Summary and conclusions

Possible phase transitions were investigated in the p-spin models on SF
hypernetworks, with two-state spins located in the nodes and with hyper-
edges corresponding to p-spin ferromagnetic exchange interactions. In such
systems, the ground state is, in general, degenerate, and apart from the
ferromagnetic state there are multiple spin-glass like states with the same
minimum energy. Theoretical investigation using the MF approximation
suggests that in such systems at low temperature first-order ferromagnetic
phase transition is possible, as well as transition to one of the glassy ground
states. MC simulations using the Glauber dynamics confirm the presence of
the phase transition for most of topologies of the SF hypernetworks, which
for some topologies can exhibit certain signatures of the first-order transi-
tion, e.g., negative dip of the Binder cumulant, while for other ones is rather
second-order. The critical temperatures evaluated in the MF approximation
and obtained from MC simulations show only qualitative agreement.

Complex hypernetworks form a natural environment to study systems
with complex many-body interactions. In this paper, it was shown, using
the problem of phase transitions in the p-spin models on SF hypernetworks as
an example, that such systems can be investigated both numerically and an-
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alytically, with methods similar to those in the theory of interacting systems
on complex networks (e.g., the MF approximation). They can exhibit more
diverse behaviour than systems on networks (e.g., degeneracy of the ground
state, phase transitions with some signatures of the first-order transition).
Hence, investigation of interacting systems on hypernetworks can become a
promising trend in the research on complex systems, as it was in the case of
interacting systems on complex networks and their generalizations.
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