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Self-organization in biological systems often emerges as widespread os-
cillatory dynamics of coupled units. Two types of oscillation phenomena can
be investigated in networks of automata. One may observe sustained oscil-
lations in a system of non-oscillating automata (as in, e.g., the Greenberg–
Hastings cellular automata), or one may investigate synchronization, i.e.
self-organization of individual cellular oscillations to the common oscilla-
tion. Both approaches are used in modeling cardiac electrophysiology. This
paper begins with a review of the capabilities and limitations of these propo-
sitions in reproducing the functionality of the human pacemaker. Then,
an approach to modeling the pacemaker tissue is presented that is based
on timed automata having heterogeneous topology of couplings. Timed
automata combine intrinsic cellular transitions with nearest neighbor in-
teractions. The complex topology of intercellular interactions is modeled
by a stochastic network with the heterogeneous structure arising from the
preferential rewiring. The resulting simulation framework exhibits signif-
icantly improved computational efficiency in modeling different aspects of
the self-organization to the common wave patterns, and furthermore, in
reproducing changes in the pacemaker tissue caused by biological aging.
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1. Motivation and objectives

Discrete state, space, and time systems have been successfully used in
explaining collective phenomena of a thermodynamic type, such as contin-
uous phase transition in ferromagnetic media [1–3], or a dynamical type
like self-organized criticality [4]. The cellular automata technique has been
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successfully applied in the study of critical phenomena in various fields. Con-
sider, for example, the Nagel–Schreckenberg model of road traffic [5], or the
percolation model of imitation and herding on financial markets [6, 7].

However, in biological systems, self-organization mostly emerges as the
widespread oscillatory-type dynamics of coupled units [8]. Two types of this
kind of collective phenomenon can be investigated within the framework
of cellular automata. Firstly, we may observe the emergence of sustained
oscillations in the system of non-oscillating units. Secondly, we may study
the self-organization of the intrinsic oscillations of each automata to the
common oscillation of the system.

The Greenberg–Hastings (GH) cellular automata system [9] — the model
of so-called excitable media — is a prototype for a system achieving sus-
tained oscillations when the elementary units are not oscillators. But if we
replace each automaton with a discrete oscillating element and distribute
these elements over some complex network, we then move to a pacemaker
automata network (PAN), in which the phenomenon of synchronization can
be investigated.

When describing the synchronization, one intuitively thinks of the ad-
justment of rhythms of oscillating objects due to their interactions [8]. In
general, this adjustment manifests as the frequency entrainment of oscilla-
tors, and if this is the case, phase entrainment synchronization can then
emerge. Here, the synchronicity will be investigated in terms of the Ku-
ramoto order parameter [10, 11]. It will be shown that this description
provides consistent quantification of stationary states arising from the PAN
model considered.

In distinction to the so-called hybrid cellular automata that are based
on the close relation of the automata transitions to the continuous models
of a cardiac cell [12] (such as e.g., the Hodgkin–Huxley model of the giant
squid axon [13] or the Luo–Rudy model of a guinea pig ventricular cell [14]),
the approach based on the PAN, focuses on topological aspects of the phe-
nomenon of synchronization, namely on implications of the topology to the
synchronization. For this reason, the PAN model not only provides the re-
construction of biochemical properties of the cellular membrane, but also
refers to the spatial organization of the cells.

The flexibility of the PAN allows different aspects of modern physiol-
ogy to be efficiently taken into account. We believe that in this way, the
discrete systems offer a valuable tool for explaining qualitatively and some-
times quantitatively properties observed in nature. Moreover, systems biol-
ogy [15, 16] requires models that bridge different time and space scales, such
as the discrete models discussed here.
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The GH model is redrafted in Sec. 2 to explain the essentials of self-
organization in excitable systems. Some important physiological facts are
also presented [17–21], which justify the extension of the GH proposition to
the pacemaker automata network. In Sec. 3, we introduce the notion of timed
automata (based on [22, 23]) and discuss pulse synchronization in a fully
connected network of timed automata. The PAN model and a discussion
about synchronization under different topological conditions are presented
in Sec. 4. Finally, we explain how changes in the human pacemaker, which
appear due to aging of the organism, can be examined within the proposed
PAN.

2. Emergence of oscillations in GH models

The GH model [24, 25] assumes that vertices of a square lattice are
occupied by cells that can be in an activity state, denoted as 0, a firing
state, denoted 1, or in a sequence of recovery states: coded as 2, . . . , T − 1,
when a cell is refractory to any interactions. But if a cell is in state 0 and
this cell has a sufficient number of neighbors in state 1, it switches to firing
and then starts the recovery process. With each time step, its state advances
from 2 to T − 1. Finally, the cell’s state switches back to the activity state,
and the cell waits for the next excitation. Thus cellular automata imitate
excitable media, i.e. media composed of excitable cells but otherwise quiet.

2.1. Sustained oscillations in GH automata on a square lattice

Let us assume that cells are located on the vertices of an L×L square lat-
tice. Traditionally, two types of cell neighborhood are considered on a square
lattice: the von Neumann neighborhood, consisting of four cells connected
by horizontal and vertical edges of the lattice, and the Moore neighborhood,
in which additionally four cells connected by diagonal edges are included.

Let all cells J ′ ∈ L×L which have a direct connection to J be neighbors
of J , which we denote as J ′ ∈ N (J).
Let σ denote the state of a cell, σ ∈ {0, 1, . . . , T − 1}.
Then, the state of the cellular system at time t is represented by a
function

φ(t) : L× L→ {0, 1, . . . , T − 1} (1)

that evolves according to the rule:
for any J ∈ L× L
(I) if φ(t, J) = σ ≥ 1, then φ(t+ 1, J) = (σ + 1) mod T ;
(II) if φ(t, J) = 0, then φ(t+1, J) = 1 if more than F of its neighbors

are 1, otherwise φ(t+ 1, J) = 0.
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Rule (I) describes the free evolution of a cell. Rule (II) introduces inter-
actions with the nearest neighbors by the cells. F is the threshold for these
interactions.

Starting from a random state (called a primordial soup), after many
time steps we observe that cellular states are well-organized in patterns.
These patterns live independently of each other on the network, though
subordinating free cells, i.e., cells not involved in any pattern. They are
either stable and periodic, and therefore called stable periodic oscillations
(SPO) [25], or all the cells reach the same state φ(t, J) = 0; see Fig. 1.
It is obvious that for large F , the system reaches the homogeneous state.
However, a general classification of the limiting behavior is difficult.

Fig. 1. Examples of the SPO patterns obtained for F > 0 and: T = 9 (left) and
T = 32 (right). On the left-hand side, we observe many coexisting SPOs. The
pattern in the right plot is driven by one SPO. Such a pattern occurs rarely (with
prob. < 5%) for T = 32. Cells in the firing state are coded in dark gray/red, active
cells are medium gray/green, cells in the refractory state are light gray/yellow.

In the simplest case, the GH system is built from the three-state cellular
automata: 0 for the activity, 1 for the firing, and 2 for the refractory. The
nearest neighbors are described by the von Neumann neighborhood, which
denotes that for J = (i, j), N (J) = {(i− 1, j), (i+ 1, j), (i, j− 1), (i, j+ 1)}.
For F = 0, if an initial state contains one of the following patterns or their
reflections

1 2

0 0
,

1 2

0 2
,

1 1

2 0
(2)

then this pattern is persistent [26].
It can be proved that if F = 0 and T ≥ 3, the system of the GH cel-

lular automata becomes locally periodic with probability 1, and the period
is T [25]. The proof is based on the idea of a clock — an invariant pattern
which consists of a loop of sites along which all T states are arranged cycli-
cally. Since F = 0, the state advances each time at every site of such a loop.
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Thus no cells stay in state 0 for longer than 1 step. But if the lattice size is
finite, we observe a transition (between the state driven by the SPO and the
homogeneous pattern) as T — the length of the clock loop increases. See
Fig. 2 (left) for rough estimates of Tcrit obtained for L = 100, in the Moore
neighborhood and with a different F .

Fig. 2. Left: Probability of emergence of the SPO for different T . Simulation
parameters: lattice 100 × 100, free boundary conditions, neighborhood consisting
of 8 neighbors in the Moore neighborhood. Right: Example of an intriguing pattern
emerging when F = 1 and T = 4.

When the threshold takes a value larger than 0, F > 0, it is much less
clear whether a clock can be formed dynamically, and whether the limit
pattern is locally periodic. For example, intriguing patterns are obtained if
F = 1 and T = 4; see Fig. 2 (right). Thus the question about the transition
in the ergodic behavior is governed by the question of the existence of the
SPO.

In the probabilistic version of the GH model, the transition to firing
(II) is governed by the transmission rate pT. Berry and Fates in [27] con-
sidered properties of the probabilistic GH model for F = 0 and different
neighborhoods on a square lattice. They found that the transition from a
homogeneous limiting state to the SPO state is critical with respect to pT
and T . They provided arguments that this transition belongs to the univer-
sality class of directed percolation independently of the neighborhood shape
and size. Directed percolation is a paradigm of transitions in nonequilibrium
systems in which the transition point separates an active phase from a phase
in which the dynamics is frozen (the so-called absorbing phase); see, e.g.,
[28]. Belonging to the same universality class denotes that systems share the
same critical properties. In particular, they have the same critical exponents
of the basic state functions.
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2.2. Sustained oscillations in GH automata distributed
on stochastic square lattice

Let us assume that not all the connections to 8 neighbors in the Moore
neighborhood are established. Let d describe the probability that there
is a connection between the neighbors in the Moore neighborhood. Then
n(d) = 8d describes the mean number of nearest neighbors of a cell. It is
obvious that the limit state will depend on d. In Fig. 3, we show examples of
the limit patterns observed for different densities of neighbor connections n.
Since the probability of establishing a clock decreases when n decreases,
the limit patterns are constructed from fewer individual clocks. Moreover,
patterns with periods different from T emerge; see cases n = 3.2 and n = 2.4
in Fig. 3. At very low densities, local stable patterns can be observed; see
case n = 2 for len (refractory) = 10 in Fig. 3.

Fig. 3. Examples of SPO patterns obtained for F > 0, len (refractory) = 15 (hence
T = 17) for the following numbers of random intercellular connections: (from the
left to the right, from top to bottom) 8.0, 6.0, 4.0, 3.2, 2.4, 2.0.

Additionally, in Fig. 4 we present plots of critical changes in the proba-
bility of observing the SPO with different densities of neighbor connections
with respect to the value of T .
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Fig. 4. Probability of observing the SPO in the limit state for different densities of
intercellular connections when T is increasing.

Berry and Fates in [27] studied how defects in the topology of intercellular
connection influence critical properties in the system. They considered both
the missing cells and blocked connections. It occurs that independently
of the intensity of defects, the system is critical with respect to pT and
this transition again belongs to the percolation universality class. By using
mean-field tools, they were able to prove that the critical value for pT relates
to the mean number of the nearest neighbors inversely proportional to n,
namely as 1/n.

2.3. Elements of pacemaker physiology

In real pacemaker cells, the process of excitation, called depolarization
of the cellular membrane, is due to calcium ions; see Fig. 5. The calcium
ions are much heavier than the sodium ions which drive the depolarization
in the cells of the working cardium. In consequence, the depolarization in
the pacemaker cell progresses less rapidly than the depolarization in the
myocytes in any other part.

It is known that the myocytes of the pacemaker are sparsely intercon-
nected compared to the extent of interconnections observed in other tis-
sues [29]. A typical pacemaker cell in the canine pacemaker is connected to
only 4.8± 0.7 neighbors, compared with 11.3± 2.2 cells in the left ventricle
and 6.4± 1.7 cells in the crista terminalis — the tissue propagating the ex-
citation from the heart’s first pacemaker — called the sinus node — to the
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Fig. 5. Membrane potential of the pacemaker cell (diagram based on [18]). The
membrane potential is negative due to the active transport driven by the molecular
pumps (proteins embedded in the membrane), which change three sodium ions into
two potassium ions. The depolarization process (marked as 0) starts when the
potential r reaches the threshold value. The change in the potential value is due to
the inward calcium currents (denoted as iCa(L)). After the change in the membrane
polarization, the potassium ions leave the cell, initiating the repolarization process
(marked as 3). Notice that the membrane potential does not remain constant after
reaching the minimal value but slowly grows (marked as 4). It is assumed that
this growth is due to a so-called funny current if — a mixture of the sodium and
potassium ions.

heart’s second pacemaker — called the atrial node. The intercellular connec-
tions of myocytes are based on intercalated disks — elaborate junctions of
membranes at the cell’s boundary. However, the aggregated junction profile
length per unit myocyte area is 26.5 times greater in the left ventricle and
5.0 times greater in the crista terminalis than in the sinus node. This results
in weaker interactions between the neighboring cells of the sinus node than
between myocytes in the ventricle.

Additionally, the myocytes comprising the human sinus node are small
when compared to the ventricle cell. They have poorly developed organelles,
such as sacromeres and sacroplasmic reticulum, which enable cell contrac-
tion. They are organized in an irregularly bordered, highly fibrous connec-
tive tissue matrix. The high density of the connective tissue discriminates
the nodal tissue from the surrounding non-nodal tissue [20].

In general, the connective tissue and fibroblasts form a structural support-
framework for myocytes and blood vessels, guiding the cardiac tissue cy-
toarchitecture [30]. They contribute to structural, biochemical, mechanical
and electrical properties of the myocardium. Cultured cardiac myocytes
and fibroblasts readily form the functional gap junctions [31]. Fibroblasts
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demonstrate long processes that envelope the myocytes. Fibroblasts can af-
fect electrophysiology passively, for example by acting as obstacles to the
spread of electrical excitation, or actively if they are coupled to myocytes.
However, the collagen — protein produced by fibroblasts — separates small
groups of cells from each other and thus limits the extent of intercellular
contacts.

2.4. Pacemaker model based on GH cellular automata

Progress in biotechnological engineering allows the construction of cellu-
lar systems of myocytes. It is then possible to compare the electrochemical
properties of such tissue with properties observed in cellular automata mod-
els. Bub, Shrier and Glass [32] constructed monolayers of cardiac cells of
embryonic chickens, and compared properties obtained from the experiments
with the results provided by the following cellular automata

φ(t) : L× L→ {0, 1, . . . , f, f + 1, . . . , f + r} (3)

that evolves according to the rules:
for J ∈ L× L

(I) if φ(t, J) = σ ≥ 1, then φ(t+ 1, J) = (σ + 1) mod (f + r + 1);

(II) if φ(t, J) = 0, then φ(t+ 1, J) = 1

(a) if more than F (t, J) neighbors of J are 1, . . . , f ,
or

(b) with probability ρ.

Note that:

(a) In place of the firing step (coded as 1 in (3)), here we have a firing
phase consisting of a sequence of states numbered from 1 to f . After
completing the firing phase, a cell moves to the refractory phase.

(b) The excitation threshold F (t, J) is assumed to depend on both t and
the cell localization J . The first argument mimics the so-called fa-
tigue effect of a cell that has just entered the activity state 0. Is it
assumed that for a given cell, the threshold F (t, J) for the transition
to the state 1 lowers according to the length of the time t spent by
the cell in the 0 state. The second argument is used to model the
heterogeneity of intercellular connections. Bub, Shrier and Glass [32]
move away from square lattice limitations with the idea proposed by
Markus and Hess [33] to transform the integer coordinates of a square
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lattice into real coordinates by adding a random component uniformly
chosen from [0, 1]. This transformation allows the introduction of a
more general cellular neighborhood than the neighborhood of nearest
neighbors, namely all the cells located at a Euclidean distance less
than some fixed value D from a cell are neighbors of this cell.

(c) Thanks to ρ in (II) (b), each cell performs self-excitation at random.
However, in the simulation, this event is assumed to occur rarely ρ =
0.001, though it is known that pacemaker cells are self-excitatory.

This model reveals a crucial property observed in the natural system.
The transition from spiral patterns, spontaneously initiated and terminated,
to patterns with multiple fractionated wave fronts emerges if the density of
cells and/or the strength of intercellular connections are changed [32]. This
means that the cardiac tissue loses its functionality for impaired intercellular
connections.

3. Synchronization in network automata

As described in Fig. 5, the cells of the sinus node perform identical, cycli-
cally repeated steps. Thus, they are oscillating units rather than individuals
quietly waiting for the next stimulation.

Intuitively, any oscillator J is a point moving on a circle of radius 1 with
some angular velocity ω(J). If such oscillators are not coupled, the evolution
of any oscillator J is

φ(t, J) = ω(J)t+ φ(0, J) , (4)

where φ(0, J) is an initial phase of the oscillator J .
Assuming that the oscillator remains in the basin of attraction of its limit

cycle for a stimulus delivered at any phase in the cycle, one can describe
the system by the set of phases φ(t, J) of the coupled oscillators [36]. The
phase response curve is proposed as the function describing the change in the
oscillator phase caused by the interaction. The phase can be pushed forward,
or moved opposite to the direction of the free motion of the oscillator.

Several mathematical models have been proposed to study the sponta-
neous synchronization emerging in a system of coupled oscillators, spatially
distributed in a network [8, 34]. The first solvable model was provided by
Kuramoto [10]. The model is simple enough to be mathematically tractable,
yet sufficiently complex to display a large variety of synchronization phe-
nomena. Moreover, the model is sufficiently flexible to be adapted in many
different contexts; see [11] for a review.
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The Kuramoto model introduces the so-called Kuramoto order parame-
ter KΦ [10] to measure the phase synchronization of N oscillators

Kφ = reiΨ =
1

N

N∑
J=1

eiφ(J) . (5)

If all oscillators are synchronized, i.e., all have the same phase, then |KΦ| =
r = 1. When all oscillators are completely out of phase with respect to each
other, the value |KΦ| remains close to 0 most of the time.

Among the coupled oscillators, a pulse-coupled network consisting of
integrate-and-fire oscillators interacting with each other by impulse signals
(e.g., the Peskin model [37]) has been found as a prototype model for pace-
maker cells of the heart [35], and therefore is characterized in more detail
below.

3.1. Peskin model of coupling in oscillatory timed automata

Let us assume that a system of cells is a fully connected network of
identical, pulse-coupled oscillators. Let the oscillator J evolve according
to [37]

φ̇(t, J) = Φ(0)− γφ(t, J) , (6)

where Φ(0) and γ, with Φ(0) > |γ|, and γ 6= 0, are intrinsic properties of the
oscillator. If φ(t, J) = 1, the oscillator J fires and φ(t, J) jumps back to 0.

Let the oscillators interact according to a rule:

if φ(t, J) = 1 then φ
(
t+, J ′) = min

{
1, φ

(
t, J ′)+ ε

}
for each J ′ 6= J (7)

which means that when a given oscillator fires, it pulls all the other oscillators
up by an amount ε, or pulls them up to firing, whichever is less.

Mirollo and Strogatz [35] proved that independently of how the system
starts, the cells all end up firing in unison. Adapting the Peskin model to
cellular automata, Bartocci et al. [23] used timed automata; see Fig. 6.

A timed automaton can be considered as the abstraction of a timed sys-
tem. The timed automaton is a finite automaton (a graph containing a
finite set of nodes and a finite set of labeled edges) extended within general
real-valued variables [22]. These variables model the logical clocks in the
system. They are initialized with the zero value when the system is started,
and then their values increase synchronously at the same rate. Clock con-
straints, called guards, are introduced to restrict the behavior of the automa-
ton. A transition, represented by an edge, can be made when the clock’s
values satisfy the guard that labels the edge. Clocks are often reset to zero
when a transition is made.
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Fig. 6. Diagram explaining the oscillatory rule of Bartocci et al. applied to a timed
automaton [23]. A clock, represented by the variable x, marks time spent by an au-
tomaton in each of the three states {1, 2, 3}. The transitions, called depolarization,
resting, and fire, are guarded by the clock. The clock is reset after the transition.
The special timing of the dynamics follows the characterization of the membrane
potential of the rabbit pacemaker cell, which is shown in the top-left part of the
diagram.

Bartocci et al. [23] have shown that 3 oscillatory timed automata, evolv-
ing in a way described in Fig. 6 and interacting according to the Peskin
rule (7), achieve synchronization for some values of ε in the limit time.

4. The pacemaker automata network (PAN) model

The idea of the timed automata is used below to refine the pacemaker
model previously studied by us [38–40].

4.1. Modeling heterogeneity of intercellular connections

Our proposition for remodeling of the square lattice connections cor-
responds to the algorithm designed by Watts and Strogatz [41] of rewiring
network edges in a diffusive way, i.e. in a way in which each event of rewiring
changes only one end of the edge. We modify this algorithm by inserting
limits on how far the end of the rewired edge can diffuse; see Fig. 7, [38, 42]:
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For each cell J ∈ L×L and for each link from J to any of J ’s neighbors
J ′ ∈ N (J)

(A) a connection from a cell J to a cell J ′ is broken with a probability
dependent on the connectivity of the neighbor J ′, as follows

pbreak =
p

deg(J ′)
, (8)

where deg(J ′) denotes degree of the node J ′;
(B) a new neighbor J ′′ for a cell J is chosen at random from the set

of neighbors of J ′, so J ′′ ∈ N (J ′).

Exclusions: breaking the connection to a leaf is forbidden. (A leaf is
a node which is of degree 1.)

Fig. 7. Illustration of the rewiring algorithm. The J ′-end of the connection (J ,J ′)

between cells J and J ′ is changed to J ′′, which is the neighbor of cell J ′. J ′ is
chosen at random but with the preference described by (8). J ′′ is chosen at random
from the neighbors of J ′. The numbers describe the actual vertex degree. Note
that J has two neighbors of degree 1 — leaves — which, for the protection of the
network connectivity, cannot be unlinked.

Note that all cells are considered in one remodeling step. Hence, each
edge is considered twice: the first time as the connection from J to J ′, and
the second time as the connection from J ′ to J . We call one remodeling
step, one Monte Carlo (MC) step, and use the number of these steps as the
measure of remodeling of the lattice. After each MC step, the table with
the information about cell degrees is updated. If p is small enough, such
remodeling mimics synchronized changes in the lattice [42]. By repeating
the remodeling step many times, increasing numbers of cells that are distant
on the square lattice metrics become neighbors.
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The rewiring algorithm influences the distribution of vertex degrees; see
Fig. 8. There appear vertices which have more than 8 neighbors. The more
MC steps are applied, the more vertices with the high vertex degree ap-
pear. If a hundred MC steps are applied to a stochastic square lattice which
initially has the mean number of nearest neighbors 〈n〉 = 4.5, we obtain a
network which has some cells connected to more than 10 cells. Hence, we
can say the network is slightly heterogeneous.

Fig. 8. Distribution of vertex degrees in a stochastic lattice with mean n = 4.5

transformed by the rewiring algorithm for different values of MC steps.

4.2. Model of a pacemaker automaton

Let φ(t, J, x) denote the 3-state timed automaton located in J ∈ L×L.
Let the states of the automaton be σ ∈ {0 = firing, 1 = refractory,
2 = activity}.
Let x be the clock guarding transitions between states with thresholds
θ(σ).

Then,

(I) if φ(t, J, x) = σ and x < θ(σ), then φ(t+1, J, x) = σ and x = x+1;

(I’) if φ(t, J, x) = σ and x = θ(σ), then φ(t+ 1, J, x) = (σ+ 1) mod 3
and x = 0.
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For illustration see Fig. 9.

Fig. 9. Illustration of the intrinsic cycle of the pacemaker automaton. The three
states of PA are called {firing, refractory, activity}. A clock, represented here
by x variable, marks time spent by an automaton in each of these states. The
transitions are guarded by the clock. After the transition, the clock is reset.

The rules (I) and (I’) describe the free dynamics of the pacemaker au-
tomaton — a periodic sequence of length θ(0) + θ(1) + θ(2) = T , of the
automaton state and the corresponding clock count. Let us denote f = θ(0),
r = θ(1), a = θ(2).

Then,

• the phase function, describing the advancement of the pacemaker au-
tomaton in its intrinsic cycle is defined as

Φ[φ(t, J, x)] = xδ0,φ(t,J,x) + [θ(0) + x]δ1,φ(t,J,x) (9)
+[θ(0) + θ(1) + x]δ2,φ(t,J,x) .

In the case of the free evolution, the above formula can be simplified to

Φ[φ(t, J, x)] = [t mod T + φ(0, J, x)] mod T ;

• the pacemaker automaton is called stochastic if the clock x is allowed
to jump into the guarding value of the actual automaton state with
some probability s.

In the following, we limit the stochasticity of the clock guards to short-
enings of the time elapsed by a cell in a given state. These shortenings are
governed by the formula

x = θ(σ) with probability s =

(
1− x

θ(σ)

)ξ
for ξ ≥ 0 . (10)
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In this way, each automaton J performs the intrinsic cycle in a stochastic
way with an actual set of the thresholds for transitions: θ(σ; J, x, t). Each
time an automaton switches to the state 0, its phase Φ is reset to 0. Then
Φ is advanced at each time step. Therefore, Φ measures time steps spent by
the automaton in a given oscillation.

Let us assume that coupling between the pacemaker automata takes
the form

(II) if φ(t, J, x) = 2 and more than F neighbors of J are in the state 0,
then φ(t+ 1, J, x) = 0 and x = 0;

(II’) if φ(t, J, x) = 1 and more than R neighbors of J are in the 0, then
φ(t+ 1, J, x) = 1 and x = bx/2c.

The coupling introduced by (II) leads to a reduction in the time steps
which are spent by a cell in the activity state. This results in decreasing
of the oscillation length. The coupling proposed by (II’) shifts back the
clock when a cell is in the refractory state. In consequence, an elongation
of the cellular oscillation appears. Together these couplings establish the
physiologically known system of the myocyte activation (II) — inhibition
(II’) [43].

Interactions (II) and (II’) have a significantly different influence on the
set of limit states. For example, when automata are located in vertices of
a line and the evolution is deterministic, then the neighboring cells of the
limit state have an oscillatory phase difference equal to 0 or to ±1. Moreover,
when rule (II’) is turned off then the state with the phase difference equal
to 0 is unstable. If rule (II’) is activated, this state becomes attractive. Such
a phase pattern denotes that all automata can go into the firing state at the
same time. Therefore, they can be compared to a marching squad. This
bifurcation occurs because of the property that for any two coupled cells, if
the first cell is in state (0, f) and the second cell is in state (1, 1), in the next
time step both these cells have the same state (1, 1).

In situations other than that described above, we obtain [39]:

if a cell in the state 2 is a neighbor of a cell in the state 0, then(
(2, x)

(0, x′)

)
t

=

(
(0, 1)

(0, x′ + 1)

)
t+1

= . . . =

(
(0, x)

(1, 1)

)
t′

;

if a cell in the state 1 is a neighbor of a cell in the state 0 then(
(1, x)

(0, x′)

)
t

=

(
(1, x/2 + 1)

(0, x′ + 1)

)
t+1

= . . . =

(
(1, x′′)

(1, 1)

)
t′

with x′′ < x ;
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if a cell in the state 1 is a neighbor of a cell in the state 1 and x < x′

then either: (
(1, x)

(1, x′)

)
t

= . . . =

(
(0, 1)

(1, x′′)

)
t′

or (
(1, x)

(1, x′)

)
t

= . . . =

(
(0, 1)

(2, x′′)

)
t′
.

4.3. Physiological interpretation for the interaction driving parameters

The two parameters F and R which regulate the couplings (II) and (II’)
can be considered as measures of the sensitivity of a cell to the interactions
of types (II) and (II’), correspondingly. Namely, a greater value of F means
that more neighbors in the firing state are required to cause the excitation
of a cell. Similarly, a greater value of R means that more neighbors in the
firing state must be present to elongate the cellular cycle.

Taking into account the features of the nodal tissue described in the pre-
vious section, we can enumerate the two settings of the coupling parameters
as physiologically relevant:

• F > 0 and different R values as revealing the excitable tissue because
this setting describes the tissue which is sensitive to signal propagation;

• F > 1 and differentR values as revealing the pacemaker tissue because
this setting reflects a smaller area of intercellular junctions in the sinus
nod tissue than the junctional area among the ventricular cells, which,
in consequence, requires more neighbors in the firing state to reach
the threshold for interactions.

4.4. Synchronization in PAN

In general, the pattern formation is the visible outcome of the self-
organization process; see Fig. 10. When we search for the pacemaker func-
tionality, we expect the emergence of the center which produces the sustained
oscillations propagating to the system boundary. It appears that depending
on the density of intercellular connections, one or more such centers can
develop. However, intercellular interactions of type (II’) have the tendency
to stabilize the system with all automata marching as a squad. Therefore,
the automatic classification of the stationary patterns might be ambiguous.

We took up the challenge to classify the stationary patterns in the three
main groups: collapsing circular patterns, expanding circular patterns and
marching squad patterns [39]. However, in some cases, one can obtain a mix-
ture of these classes. In Fig. 11, we show the dependence on the probability
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Fig. 10. Typical patterns in the stationary states obtained in networks of the pace-
maker automata self-organized to the common oscillation. All the patterns are ob-
tained for the same density of intercellular connections n = 5.6, but for a different
sensitivity of interactions and/or different network structure. Left: F > 1,R > 2,
the rule is deterministic, the network is homogeneous. The limit pattern is made
of the expanding circular fronts. Middle: F > 4,R > 1, the rule is deterministic,
the network is homogeneous. The limit pattern is built from the collapsing cir-
cular fronts. Right: F > 1,R > 2, the rule is stochastic, the network is rewired
100 MCS. The limit pattern presents the strong and fast-moving front of the ex-
panding excitation.

Fig. 11. Probability of encountering the stationary pattern as collapsing, expand-
ing or marching as a squad for different sensitivities of interactions and different
densities of intercellular connections.
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of occurrence of the particular classes with respect to the mean number
of neighbors n. The plots, in particular, refer to the deterministic pace-
maker automata arranged on a homogeneous stochastic network. It appears
that the largest variety of the possible outcomes is when F > 1,R > 1 or
F > 1,R > 2, and for a density of neighbors of four to six. We claim that
these parameters describe the cardiac pacemaker properties.

The Kuramoto parameter KΦ, defined in (5), is perfectly suited to de-
tecting patterns of a marching squad because KΦ = 1 in these patterns.
Therefore, by observing conditions when KΦ changes from that value, we
can automate the classification of the stationary patterns.

In order to get KΦ, two groups of computer experiments were performed.
In the experiments in the first group, we investigated properties of KΦ ob-
tained for deterministic pacemaker automata distributed on the homoge-
neous stochastic networks; see Fig. 12. The second group of simulations
was concentrated on properties of the stochastic pacemaker automata, with
ξ = 10 (see (10)), which were located on the network with edges rewired
100 MCS; see Fig. 13.

Fig. 12. Mean Kuramoto order parameter KΦ obtained in experiments with the de-
terministic pacemaker automata located on the homogeneous network for different
densities of intercellular connections n and different values of the sensitivity param-
eters F and R for interactions. The grey/green marks show all results obtained.
The thin/red curves are standard deviations of the results.
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Fig. 13. Mean Kuramoto order parameter KΦ obtained in experiments with the
stochastic pacemaker automata located on the rewired 100MCS networks for dif-
ferent densities of intercellular connections n and different values of the sensitivity
parameters F and R for interactions. The grey/green marks show all the results
obtained. The thin/red curves are standard deviations of the results.

Each group of experiments consisted of either 50 (deterministic rule) or
30 (stochastic rule) independent simulations, which were performed for dif-
ferent densities n of intercellular connections. The lattice size was L = 100,
which means that N = 104 interacting cells were considered. Free boundary
conditions were assumed. The initial state in all the experiments was the
primordial soup. The thresholds for the transitions to the next cellular state
were f = 9, r = 11, a = 19. In each experiment, the first 104 steps were
not included in the analysis. Then the states were assumed to be stationary,
and the statistics of KΦ were recorded.

We can learn from Fig. 12 that deterministic pacemaker automata evolv-
ing with stochastic but homogeneous networks of intercellular connections,
led to patterns of the marching squad type. However, if the density of the
intercellular connections is n ∈ (4.5, 6), other stable solutions emerge. These
solutions can be described as patterns with a huge variety of circular waves.

In contrast, if the pacemaker system is built from stochastic pacemaker
automata distributed on rewired networks (though the intercellular connec-
tions are slightly heterogeneous), the marching squad synchronization does
not emerge for any model parameters significant for the cardiac pacemaker
modeling; see Fig. 13. Additionally, we can see that for densities n ∈ (4.5, 6),
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when the sensitivity parameters F > 1, R > 2 correspond to the cardiac
pacemaker, the variety of solutions is rather restricted. This is the case when
patterns of the type shown in the last panel of Fig. 11 occur with high prob-
ability.

4.5. Sinus node aging via pacemaker network automata

It is known that the function of the sinus node declines with age, leading
to the condition called sick sinus syndrome [44]. This syndrome is basi-
cally associated with a variety of cardiac arrhythmia or conduction distur-
bances [45]. Sick sinus syndrome accounts for more than 50% of pacemaker
implantations in people over 60 years of age.

The sinus node function impairment may occur (a) as a result of struc-
tural changes (collagen deposition), (b) as alterations in the ion channels (the
expression and/or the function of ion channels may be perturbed), or (c) as
impairment in cell-to-cell communication (altered gap junction). All of the
changes above can be easily reconstructed in the considered model of the
PAN. Subsequently, (a) an increase in the collagen deposition can be mod-
eled as a decrease in the density of intercellular connections; (b) and (c)
changes in the performance of the ion channels can be encoded as different
timings in the pacemaker automaton cycles or via parameters F , and R
measuring the sensitivity of interactions.

Furthermore, the membrane potential is used in experiments as the out-
come of the changes in the expression of genes responsible for the perfor-
mance of ion channels [19, 20, 45]. For example, the expression of genes of
Caν1.2, Caν1, 3 channels, which are responsible for the ICaL current (see
Fig. 5), is measured by the speed of the fast depolarization. In this way, the
length of the fast depolarization — via threshold value f for the clock guard-
ing the firing state — provides inter-scale insight into the role of particular
processes in the functionality of the pacemaker. Similarly, the activity of
the potassium channels: Kν4.2, Kν4.3, etc. (see [20] for a more complete
list), which are responsible for IK for the repolarization of the membrane
potential, can be evaluated by the time in which the membrane reactivates
its lowest potential.

Though the PAN model is based on macroscopic properties of the fea-
tures of the membrane of the sinus node myocyte, and therefore the behavior
of cellular ion channels and currents cannot be directly taken into account,
indirectly even changes in the expression of genes can be included.

5. Conclusions

Systems biology is a multidisciplinary field, the goal of which is to pro-
vide an integrative level of understanding of biological systems [15]. Systems
biology could greatly benefit from the development of abstraction techniques
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that, given a system of experimental results, construct a more abstract model
in which the properties of interest are preserved. The technique presented
of timed automata having a complex network of interactions is promising
because it replaces the properties of transient behaviors, which are intu-
itively and commonly acceptable, with discrete transitions. The heteroge-
neous nature of the considered network structure and the stochasticity of
the automata cycle appear fundamental in reproducing the propagation be-
havior of curvilinear fronts. Both these properties provide conditions for the
development of stable leading pacemaker oscillations.

However, there are always complaints that discrete models present sys-
tems in an oversimplified way that is far from the solution of real problems.
Nevertheless, thanks to discrete models’ simplicity in design and comprehen-
sibility, these models allow for a significant advance in our understanding,
and provide insight into how to process multiscale dynamical systems. Our
personal enthusiasm for discrete modeling is greatly strengthened by the fact
that discrete modeling is the only way in which complex phenomena can be
efficiently simulated on commercial computers.

This research was supported by the Polish National Science Centre UMO:
2012/06/ M/ST2/00480.
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