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An order–disorder phase transition is observed for Ising-like systems
even for arbitrarily chosen probabilities of spins flips. For such athermal
dynamics one must define (z+1) spin flips probabilities w(n), where z is a
number of the nearest-neighbours for given regular lattice and n = 0, . . . , z
indicates the number of nearest spins with the same value as the consid-
ered spin. Recently, such dynamics has been successfully applied for the
simulation of a cooperative and competitive strategy selection by pedes-
trians in crowd. For the triangular lattice (z = 6) and flips probabilities
dependence on a single control parameter x chosen as w(0) = 1, w(1) = 3x,
w(2) = 2x, w(3) = x, w(4) = x/2, w(5) = x/4, w(6) = x/6 the ordered
phase (where most of pedestrians adopt the same strategy) vanishes for
x > xC ≈ 0.429. In order to introduce long-range interactions between
pedestrians, the bonds of triangular lattice are randomly rewired with the
probability p. The amount of rewired bonds can be interpreted as the prob-
ability of communicating by mobile phones. The critical value of control
parameter xC increases monotonically with the number of rewired links
M = pzN/2 from xC(p = 0) ≈ 0.429 to xC(p = 1) ≈ 0.81.
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1. Introduction

In theoretical studies the critical point xC (i.e. Curie temperature TC
for Ising model, or percolation threshold pC in geometrical systems) may
by influenced by lattice/network topology [1–5], numerical scheme of spin
updates [6], clustering coefficient of the network [7], range of interaction [8]
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and also by assumed sites neighbourhood for geometrical systems [9–12].
Here, we consider an order–disorder transition in an athermal system, where
the probabilities of change of a local (spin-like) variable depends in arbitrary
way on the system parameters. In this system, the concepts of energy and
temperature do not apply. Recently, an order–disorder phase transition has
been observed for such a system [13]. For such athermal dynamics, one has
to define (z + 1) spin-flips probabilities w(n), where z is a number of the
nearest-neighbours for given regular lattice and n = 0, . . . , z indicates the
number of nearest spins with the same value as the considered spin. This
dynamics has been successfully applied for the simulation of a cooperative
and competitive strategy selection by pedestrians in crowd [14]. The crowd
structure has been approximated by the triangular lattice, as (i) it is the
realization of close-packed structure of spherical objects on a plane, (ii) this
lattice appeared as a result of simulation [14] within the Helbing model of
crowd dynamics, (iii) it is natural for a pedestrian walking behind a row of
other pedestrians to follow rather a free space than just another person. For
the triangular lattice (z = 6) and flips probabilities dependence on a single
control parameter x chosen as w(0) = 1, w(1) = 3x, w(2) = 2x, w(3) = x,
w(4) = x/2, w(5) = x/4, w(6) = x/6 the ordered phase (where most of
pedestrians adopt the same strategy) vanishes for x > xC ≈ 0.429.

In this paper, we extend our recent studies [14] by introducing long-
range interactions among pedestrians in a crowd. In order to introduce long-
range interactions between pedestrians, the bonds of triangular lattice are
randomly rewired with the probability p. The schematic sketch of network
construction is presented in Fig. 1.

Pajek Pajek

Fig. 1. (Colour on-line) Sketch of network construction. The red links are re-
moved from triangular lattice (here with helical boundary conditions) and replaced
by green ones with rewiring probability p. Graph was prepared with Pajek soft-
ware [17].

We show that critical value of control parameter xC increases monotoni-
cally with the number of rewired links M = pzN/2 from xC(p = 0) ≈ 0.429
to xC(p = 1) ≈ 0.81. Moreover, we present others signatures of order–
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disorder phase transition occurrence, including the Binder cumulant U4 and
pedestrians’ susceptibility for changing their strategy χ behaviours in the
vicinity of phase transition.

2. Model

The system contains N sites of triangular lattice with helical boundary
conditions (see Fig. 1). Each lattice node is decorated with a single spin-like
variable si = ±1 representing actual strategy (i.e. cooperative or compet-
itive) adopted by a pedestrian i in a crowd. The long-range interactions
among pedestrian are introduced by random rewiring of M = pzN/2 links,
where p is the single edge rewiring probability. In every Monte Carlo step,
each pedestrian is investigated either he/she will change his/her strategy
(si(t+ 1) = −si(t)) or not (si(t+ 1) = si(t)). The probabilities of changing
mind by pedestrians are given as w(n), where n indicates the number of the
nearest pedestrian using the same strategy as the considered agent i. We
use the same set of probabilities as in Ref. [14], i.e.: w(0) = 1, w(1) = 3x,
w(2) = 2x, w(3) = x, w(4) = x/2, w(5) = x/4, w(6) = x/6, where x is a
model control parameter.

After reaching by the system an equilibrium state during the first T
Monte Carlo steps, we compute temporal average of the order parameter
and its higher moments

〈
mk
〉
= T−1

2T∑
t=T+1

[m(t)]k , k = 1, 2, 4 ,

where

m(t) = N−1
N∑
i=1

si(t)

is a spatial average of the pedestrian strategies and 2T = 106, 106, 107, 107,
108, 108 for N = 106, 5122, 2562, 1282, 642 and 322, respectively.

To observe additional signatures of the order–disorder phase transition
in our system, we evaluate the fourth-order Binder cumulant

U4 = 1−
〈
m4
〉

3 〈m2〉2
(1)

and pedestrians susceptibility for changing opinion

χ =
dm

dh
. (2)
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In the latter definition, the equivalent of external magnetic field h could
play a role of common agents beliefs that using one of the strategy (for
instance cooperative) may be better than using another one (aggressive,
competitive and selfish). Thus gentlemen will not push other gentlemen,
ladies and children just to have more comfortable way to the nearest exit.
On contrary, a group of football hooligans may find previously described
strategy as strange and useless. The probabilities w(n) must be redefined as
w±(n) = w(n)∓ h in order to introduce above mentioned effects. Then, w+

and w− correspond to the probabilities for agents using si = +1 and si = −1
strategies, respectively. After such modification and assuming h > 0, all
agents using si = +1 strategy will adopt opposite strategy with a lower
probability, while agents using opposite strategy (si = −1) will change it
more likely in contrast to situation with h = 0. If for some combination of
x and h values of probabilities w(n), w+(n) or w−(n) are greater than one
(less than zero), then we assume that they are equal to one (zero).

3. Results

In the vicinity of the phase transition xC the critical slowing down was
observed for original unrewired lattice (p = 0) [14]. It means that when
model control parameter x approaches the critical point x → x+C the order
parameter m(t) oscillations become more intensive. Introducing of long-
range interactions does not destroy this effect as presented in Fig. 2.
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Fig. 2. (Colour on-line) Temporal dependence of order parameter m(t) for various
values of parameter x > xC and rewiring intensities p. The latter do not influence
the results qualitatively. The simulations are carried out for lattice with N = 106

sites. The last 105 time steps are displayed.
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In Fig. 3 the temporal order parameter 〈m〉 and 〈m2〉 dependence on
model control parameter x are presented. The value of x parameter for which
〈m〉 and 〈m2〉 vanish corresponds to the critical point xC. The dependence
of critical value of the model control parameter xC on rewiring probabil-
ity p is presented in Fig. 4. The critical value of control parameter xC
increases monotonically with the number of rewired links M = pzN/2 from
xC(p = 0) ≈ 0.429 to xC(p = 1) ≈ 0.81.
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Fig. 3. (Colour on-line) Order parameter 〈m〉 and 〈m2〉 dependence on model
control parameter x for various rewiring probabilities p. The temporal average over
last T = 5×105 sweeps through the lattice is used to evaluate average values of 〈m〉
and 〈m2〉. The values of x for which 〈m2〉 decrease to zero approximate the critical
values of xC. The simulations are carried out for a lattice with N = 106 sites.

Also the pedestrians’ susceptibility for changing the strategy χ depen-
dence on parameter xmay be used for critical point estimation. For finite but
large enough system sizes N the χ(x) dependence have maximum near xC.
This maximum positions for p = 0.01 and p = 0.9 are marked by vertical
lines in Figs. 5 (c), (d).
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Fig. 4. (Colour on-line) Critical value of the model control parameter xC depen-
dence on a rewiring probability p.
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Fig. 5. (Colour on-line) The dependence of the Binder cumulant U4 (a), (b) and
pedestrians’ susceptibility for changing their strategy χ (c), (d) on the model control
parameter x. The values of the susceptibility χ are obtained for N = 5122. The
vertical lines correspond to critical point position xC.

The intersection points of the cumulants U4 for different system sizes N
usually depend only rather weakly on those sizes, providing a convenient
estimate for the value of the critical point xC. This intersection appears
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for xC ≈ 0.52 and for xC ≈ 0.80 for p = 0.01 and p = 0.9, respectively.
These intersection points coincide very nicely with points of vanishing order
parameters 〈mk〉 (k = 1, 2).

4. Conclusions

In this paper, the influence of the long-range interactions on strategy
selection was investigated. The critical point value xC increases monoton-
ically with number of rewired links. Critical point values xC indicated by
U4(x;L) and χ(x) dependencies on parameter x (Fig. 5) coincide nicely with
xC evaluated from 〈m〉(x) and 〈m2〉(x) dependencies (Fig. 3). As we see,
the athermal character of the model preserves the validity of the tools, com-
monly accepted in statistical mechanics. Yet, it does not destroy typical
system behaviours near the order–disorder critical point.

In our interpretation, the ordered phase is a model equivalent of a situ-
ation, where most of pedestrians accept the same strategy, selfish or coop-
erative. The result indicate, that a small amount of rewired bonds strongly
supports the ordered phase. This means, in particular, that using mobile
phones enhances the homogeneity of the strategy of the majority. We note
that a similar problem of interacting nodes in a network has been consid-
ered in [15, 16], where spin-flip probabilities have been calculated within the
Ising model. There, the applied formulae rely on the well-known analogy
with magnetic energy and temperature. Our formulation and results allow
to expect that most of these approaches can be reformulated within a more
general, athermal frame.
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