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The existence of stars with masses up to 2M� and the hints of the exis-
tence of stars with radii smaller than ∼ 11 km seem to require, at the same
time, a stiff and a soft hadronic equation of state at large densities. We
argue that these two, apparently contradicting, constraints are actually an
indication of the existence of two families of compact stars: hadronic stars
which could be very compact and quark stars which could be vary massive.
In this respect, a crucial role is played, in the hadronic equation of state, by
the delta isobars whose early appearance shifts to large densities the forma-
tion of hyperons. We also discuss how recent experimental information on
the symmetry energy of nuclear matter at saturation indicates, indirectly,
an early appearance of delta isobars in neutron star matter.
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1. Introduction

The discoveries of massive neutron stars, with M = 2M�, [1, 2] rep-
resent a challenge for nuclear and hadron physics: the central densities of
these stellar objects are in the range from three to seven times nuclear satu-
ration density, depending on the model adopted for calculating the nucleonic
equation of state, see [3]. At such large densities, new hadrons are likely to
form, such as hyperons and delta isobars which, however, strongly soften
the equation of state leading to a maximum mass smaller than the mea-
sured masses. The softening of the equation of state allows, however, to
obtain stellar configurations which can be very compact and thus compati-
ble with the results of recent analyses of the thermal emission of quiescent
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low-mass X-ray binaries suggesting the existence of stars with radii smaller
than ∼ 11 km [4–6]. Although these analyses are still under debate, we in-
vestigate here what would they imply for the composition of matter at high
densities.

Presently, none of the proposed equations of state for dense matter allows
to fulfill, at the same time, the astrophysical constraints, i.e. maximum mass
of at least 2M� and radii . 11 km, and the hadronic physics constraints
of the appearance, at large baryon chemical potentials, of new degrees of
freedom of the baryon octet and decuplet. In Ref. [7], we argue that a
possible way out to this problem is that actually two families of compact
stars exist: hadronic stars which can be very compact (radii could be smaller
than ∼ 10–11 km) and have maximum masses up to ∼ 1.5–1.6M� and quark
stars which have larger radii and can reach masses up to 2.75M�, as resulting
from pQCD calculations [8]. For this scenario to be feasible, the formation
in the stellar matter of delta isobars is crucial and, as we will show in the
following, the recent constraints on the symmetry energy of nuclear matter
at saturation favor an early appearance of delta isobars.

2. Equation of state and mass-radius relations

We adopt a Walecka-type relativistic mean field model for the hadronic
equation of state introduced in Ref. [9]. In this model, additional non-linear
terms are added (in the vector mesons sector) to the original Glendenning
model [10] which allow to better constrain the equation of state at satura-
tion by use of new experimental information on symmetry energy Sv, giant
monopole resonances and finite nuclei properties. In particular, we use the
recent parametrization proposed in [11], SFHo, but including also delta iso-
bars and hyperons. Let us first discuss the results obtained for Sv as a func-
tion of the baryon density nB. In Fig. 1 we show Sv for the GM3 [12] and the
SFHo models. Notice the splitting of the two results as the density exceeds
the saturation density, with the SFHo result lying below the GM3 result.
We remark that in the GM3 model no constraint is imposed in particular on
the derivative with respect to density of the symmetry energy at saturation,
the parameter L [13] and which turns out to be of about 81 MeV. On the
other hand, in the SFHo model, the additional parameters introduced in the
Lagrangian, allow to fix L to ∼ 45 MeV, a value compatible with the analy-
ses of Ref. [13], where a window of values of L between 40 and 60 MeV has
been obtained by use of laboratory and astrophysical constraints. The term
of the symmetry energy related to the interaction, as obtained in the SFHo
model, reads [9]: g2ρ/m

2
ρnB

8(1+2g2ρ/m
2
ρf)

, where gρ and mρ are the baryon–ρ meson
coupling and the mass of the ρ meson, respectively, and f is a polynomial
function of the σ and ω fields. In the GM3 model, f = 0 and Sv increases
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Fig. 1. Symmetry energy as a function of the baryon density: comparison between
the GM3 equation of state [12] and the recent SFHo equation of state [11].

linearly with the density. A more complicated dependence on the density
arises in the SFHo model which, however, can be mapped into a GM3-like
model by use of a density dependent coupling gρ(nB) which decreases as a
function of the density. This parameter is crucial for computing the thresh-
olds of appearance of the different baryons: depending on its value, delta
isobars could appear after or before the hyperons as the density increases.
As discussed in [10], among the four isobars, the ∆− is likely to appear
first because it is “electric charge favored” (the ∆0 chemical potential does
not get a contribution from the electric charge chemical potential and ∆+,
∆++ are electric charge unfavored). However, it is “isospin unfavored” due
to its isospin charge t3 = −3/2. The coupling with the ρ meson thus affects
more the threshold of the ∆− rather than the thresholds of the hyperons. In
the calculations of Ref. [10], delta isobars appear after the hyperons and at
densities which are too high to be reached in compact stars. Of course, the
crucial inputs for calculating the thresholds are the baryon–meson couplings
expressed as the ratios with the nucleon–meson couplings: xiσ = giσ/gNσ,
xiω = giω/gNω, xiρ = giρ/gNρ where i runs over the hyperons and the delta
isobars. For calculating the beta stable equation of state needed for compact
stars, the couplings of the hyperons are fixed as in [7], while for the delta
isobars we set: x∆ω = x∆ρ = 1 and x∆σ is varied in the interval 1–1.15.
In Fig. 2 we display the ratio between pressure and energy density (which
provides a measurement of the stiffness of the equation of state) for the GM3
and SFHo models in the two cases x∆ρ = 0, 1 (here the hyperons degrees
of freedom are artificially switched off). Notice that for x∆ρ = 1, which is
the standard choice [10], the delta isobars appear at a density slightly above
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Fig. 2. Ratio between pressure and energy density as a function of the baryon
density for the GM3 and SFHo models (left and right panel, respectively). Two
cases for the coupling between ∆ and ρ are considered: x∆ρ = 0, 1.

0.5 fm−3 in GM3 and slightly below 0.4 fm−3 in SFHo. In turn, this implies
that in the GM3 model hyperons appear before the delta isobars, as found
in [10], shifting their threshold to very large densities. On the other hand,
in SFHo it is the opposite, delta isobars appear first and they shift to large
densities the hyperons. As explained before, this different behavior is related
to the coupling with the ρ meson: while in the GM3 model this coupling is
constant, in the SFHo model, effectively, it decreases as a function of the
density thus favoring states, as the ∆−, with negative isospin charge. This
is also clear when looking at the curves obtained for x∆ρ = 0: in GM3 a
strong reduction of the threshold density is obtained (of about 0.3 fm−3)
while in SFHo it is reduced of only 0.1 fm−3.

In Fig. 3, we show the mass-radius relations of compact stars, includ-
ing pure nucleonic stars (black line), hadronic stars with only delta isobars
(dashed/green line), hadronic stars with hyperons and delta isobars (light
gray/red lines), and finally pure quark stars (gray/blue line, same as in [7]).
The stellar configuration at which the dashed line/green and the black line
separate has a central density corresponding to the threshold for the forma-
tion of delta isobars. Similarly, for the formation of hyperons (solid light
gray/red line and dashed line/green) which in the SFHo model appear after
the delta isobars. We also display the two solar mass limit and the recent
interval of radii indicated by the analyses of Refs. [4, 5]. The two solar mass
limit can be reached only by quark stars (nucleonic stars also reach the limit
but only if hyperons and delta degrees of freedom are artificially switched
off when computing the equation of state). On the other hand, configura-
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tions with small radii and masses close to the canonical 1.4M� are obtained
with the hadronic equation of state that includes both hyperons and delta
isobars (see also [14]) but only if the coupling of the delta with the σ meson
is slightly larger than the coupling of the nucleon with the same meson, i.e.
x∆σ = 1.15. Arguments in favor of values of x∆σ larger than one can be
found in [15, 16]. As we have proposed in [7], if small radii stars do really
exist together with massive stars, the scenario of coexistence of two fami-
lies of compact stars is strongly favored. In this scenario, most of the stars
are actually hadronic stars and only very massive stars are composed by
pure quark matter. The mechanism which allows to populate the quark star
branch and the observational consequences of such a conversion process have
been discussed in several papers [7, 17–21]. Notice that the early appearance
of delta isobars is crucial for this scenario to be viable: they indeed delay the
appearance of hyperons which, once formed, are responsible for the seeding
of stable strange quark matter and for the subsequent conversion process.
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Fig. 3. Mass radius-relations for different equations of state together with the
maximum mass constraint and the radii window indicated by the analyses in [4, 5].

3. Conclusions

The new constraints on the symmetry energy at saturation, in particular
the L parameter, seem to favor an early appearance of delta isobars in dense
matter. These degrees of freedom, together with hyperons, must be included
in every calculation aiming at understating the structure of compact stars.
The necessary softening of the equation of state allows for the existence of
very compact stars although not very massive. However, the tension between
the existence of massive neutron stars (with candidates with masses even
larger then 2M�) and the recent indications of existence of very compact
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stars could be relieved within a scenario of coexistence of two families of
compact stars. In particular heavier stars are, in our proposal, quark stars.
These stellar objects, apart from their masses and radii larger than the one
of hadronic stars, should show anomalous cooling histories and spinning
frequency distributions. Moreover, in basically all the processes of merger of
neutron stars we expect that the remnant, before collapsing to a black hole,
is a quark star.
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