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VORTICES AND CHIRAL SYMMETRY BREAKING∗
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We analyze the creation of near-zero modes from would-be zero modes
of various topological charge contributions from classical center vortices in
SU(2) lattice gauge theory. We show that colorful spherical vortex and
instanton congurations have very similar Dirac eigenmodes and give rise
to a finite density of near-zero modes, leading to chiral symmetry breaking
via the Banks–Casher formula. We discuss the influence of magnetic vortex
fluxes on quarks and how center vortices may break chiral symmetry.
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1. Introduction

A well established theory of spontaneous chiral symmetry breaking (χSB)
relies on instantons, which are localized in space-time and carry a topological
charge of modulus 1. According to the Atiyah–Singer index theorem, a zero
mode of the Dirac operator arises, which is concentrated at the instanton
core. In the instanton liquid model overlapping would-be zero modes split
into low-lying nonzero modes which create the chiral condensate.

Center vortices are promising candidates for explaining confinement.
The vortex model of confinement is theoretically appealing and was con-
firmed by a multitude of numerical calculations, both in lattice Yang–Mills
theory and within a corresponding infrared effective model, see e.g. [1, 2].
Lattice simulations indicate that vortices are responsible for topological
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charge and χSB as well [3–5], and thus unify all nonperturbative phenomena
in a common framework. A similar picture to the instanton liquid model
exists insofar as lumps of topological charge arise at the intersection and
writhing points of vortices. The colorful, spherical SU(2) vortex was intro-
duced in a previous article of our group [6] and may act as a prototype for
this picture, as it contributes to the topological charge by its color struc-
ture, attracting a zero mode like an instanton. We show how the interplay
of various topological structures from center vortices (and instantons) leads
to near-zero modes, which by the Banks–Casher relation are responsible for
a finite chiral condensate.

2. Free Dirac eigenmodes

The chiral density of free overlap eigenmodes obtained numerically us-
ing the MILC code are shown in Fig. 1. The modes are found with the
Ritz functional algorithm with random start and for degenerate eigenvalues
the eigenmodes span a randomly oriented basis in the degenerate subspace.
Therefore, the numerical modes presented in Fig. 1 are linear combinations
of plane waves with momenta ±pµ and show plane wave oscillations of 2pµ
in the chiral density. For 123 × 24 lattices, the first eight degenerate modes
consist of plane waves with p4 = ±π/24, hence there is one sine (cosine)
oscillation in time direction, the next eight have p4 = ±3π/24, i.e., three os-
cillations in the time direction. The oscillations of χR and χL are separated
by half an oscillation length, i.e., the maxima of ρ+ correspond to minima
of ρ− and vice versa, accordingly, the scalar density is constant as expected
for free eigenmodes.
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Fig. 1. Chiral density of the low-lying eigenmodes of the free overlap Dirac operator:
ρ5#1 (left), ρ5#7 (center) ρ5#9 (right). The modes clearly show the plane wave
behavior with oscillations of 2pµ (see the text).
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3. The colorful spherical vortex

The spherical vortex was introduced in [6] and analyzed in more detail
in [7–9]. It is constructed with t-links in a single time slice at fixed t = ti,
given by Ut(xν) = exp (iα(|~r − ~r0|)~r/r · ~σ), where ~r is the spatial part of xν .
The profile function α(r) changes from π to 0 in radial direction for the
negative spherical vortex, or from π to 2π for the positive (anti-)vortex.
This gives a hedgehog-like configuration, since the color vector points in
(or against) the radial direction at the vortex radius R. The hedgehog-
like structure is crucial for our analysis. The t-links of the spherical vortex
define a map S3 → SU(2), characterized by a winding number N = −1
for positive (anti-) and N = +1 for negative spherical vortices. Obviously,
such windings influence the Atiyah–Singer index theorem giving a topolog-
ical charge Q = −1 for positive and Q = +1 for negative spherical vortices
(anti-vortices) and attract Dirac zero modes similar to instantons. In [9]
we showed that the spherical vortex is, in fact, a vacuum-to-vacuum transi-
tion in the time direction which can even be regularized to give the correct
topological charge also from gluonic definitions. Figure 2 (a) shows that a
spherical vortex has nearly exactly the same eigenvalues as an instanton.
We further plot the spectra of instanton–anti-instanton, spherical vortex–
anti-vortex and instanton–anti-vortex pairs. We again see nearly exactly
the same eigenvalues for instanton or spherical vortex pairs, instead of two
would-be zero modes there is a pair of near-zero modes for each pair.
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Fig. 2. The lowest overlap eigenvalues for instanton and spherical vortex configu-
rations compared to the eigenvalues of the free (overlap) Dirac operator.

The chiral density plots in Fig. 3 for the instanton–anti-instanton pair
and Fig. 4 for the spherical vortex–anti-vortex pair show, besides the similar
densities, that the near-zero modes are a result of two chiral parts corre-
sponding to the two constituents of the pairs. The nonzero modes can be
identified with the free overlap modes, as they show plane-wave behavior.
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Fig. 3. Chiral densities (ρ5 left, ρ+ center and ρ− right column) of the (a) lowest
(near-zero), (b) second-lowest (nonzero) and (c) eighth (nonzero) eigenmode of the
overlap Dirac operator for an instanton–anti-instanton pair. (d) ρ5 of the sixth
(left), seventh (center) and ninth (right) eigenmode.



Vortices and Chiral Symmetry Breaking 461

(a)

y=6, z=6, chi=0, n=0-0, max=0.0012622

4

8

12
x

4

8

12

16

20

24

t
-0.0002

0

0.0002

4

8x

y=6, z=6, chi=1, n=0-0, max=0.00126248

4

8

12
x

4

8

12

16

20

24

t

0
0.00005
0.0001

0.00015
0.0002

4

8x

y=6, z=6, chi=-1, n=0-0, max=0.00126195

4

8

12
x

4

8

12

16

20

24

t

0
0.00005
0.0001

0.00015
0.0002

4

8x

(b)

y=6, z=6, chi=0, n=1-1, max=0.000055155

4

8

12
x

4

8

12

16

20

24

t

-0.00005
-0.000025

0
0.000025
0.00005

4

8x

y=6, z=6, chi=1, n=1-1, max=0.0000553718

4

8

12
x

4

8

12

16

20

24

t

0

0.00002

0.00004

4

8x

y=6, z=6, chi=-1, n=1-1, max=0.0000553037

4

8

12
x

4

8

12

16

20

24

t

0

0.00002

0.00004

4

8x

(c)

y=6, z=6, chi=0, n=8-8, max=0.000562432

4

8

12
x

4

8

12

16

20

24

t

-0.0001
-0.00005

0
0.00005
0.0001

4

8x

y=6, z=6, chi=1, n=8-8, max=0.000563865

4

8

12
x

4

8

12

16

20

24

t

0
0.00002
0.00004
0.00006

4

8x

y=6, z=6, chi=-1, n=8-8, max=0.000564226

4

8

12
x

4

8

12

16

20

24

t

0
0.00002
0.00004
0.00006

4

8x

(d)

y=6, z=6, chi=0, n=6-6, max=0.0000412183

4

8

12
x

4

8

12

16

20

24

t

-0.00004
-0.00002

0
0.00002
0.00004

4

8x

y=6, z=6, chi=0, n=7-7, max=0.0000650816

4

8

12
x

4

8

12

16

20

24

t
-0.00005

0

0.00005

4

8x

y=6, z=6, chi=-1, n=9-9, max = 0.0000998798

4

8

12
x

4

8

12

16

20

24

t

0
0.000025
0.00005

0.000075
0.0001

4

8x

Fig. 4. Same as Fig. 3 but for a spherical vortex–anti-vortex pair. Chiral densities
(ρ5 left, ρ+ center and ρ− right column) of the (a) lowest (near-zero), (b) second-
lowest (nonzero) and (c) eighth (nonzero) eigenmode. (d) ρ5 of the sixth (left),
seventh (center) and ninth (right) eigenmode.

In Fig. 2 (b), we plot the eigenvalues of two (anti-)instantons and two spher-
ical (anti-)vortices giving topological charge Q = 2 (Q = −2) and therefore
two zero modes, two vortex–anti-vortex pairs with two pairs of near-zero
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modes and a configuration with two vortices and an anti-vortex (i.e., a sin-
gle vortex plus one vortex–anti-vortex pair) giving one zero mode (Q = 1)
and one pair of near-zero modes. The results show that we may draw the
same conclusions for spherical vortices as for instantons concerning the cre-
ation of near-zero modes.

4. Conclusions

Instantons and spherical vortices show similar response to fermions and
the instanton liquid model can be extended to colorful spherical center vor-
tices. In Monte Carlo configurations we do not, of course, find perfectly
spherical vortices, as one does not find perfect instantons. The general pic-
ture of topological charge from center vortices can provide a general picture
of χSB: just like instantons, any source of topological charge can attract
(would-be) zero modes and produce a finite density of near-zero modes lead-
ing to chiral symmetry breaking via the Banks–Casher relation. For more
details, see [10].

The work of R.H. was funded by the Erwin Schrödinger Fellowship of
the Austrian Science Fund under Contract No. J3425-N27.
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