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I introduce holographic techniques for modelling strongly coupled gauge
theories and AdS/QCD. Dynamic AdS/QCD is a variant in which the for-
mation of the chiral condensate is dynamically determined. As an example,
I use the model, based on perturbative computations of the running of the
anomalous dimension of the quark mass γ, to study SU(Nc) gauge theory
with Nf quark flavours.

DOI:10.5506/APhysPolBSupp.7.475
PACS numbers: 12.10.Dm, 11.25.Tq

Holography [1] is a new technique for modelling strongly coupled gauge
dynamics. It is particularly useful for studying renormalization group flow.
Here I will review holographic AdS/QCD models [2]. I will present a simple
model of the dependence of SU(Nc) gauge theory on the number of quark
flavours, Nf , that displays many of the expected features such as a conformal
window, walking and QCD-like dynamics [3].

1. Holography

In holographic models [1], the renormalization group scale of the theory is
treated as a space-time dimension. The conformal symmetry of the classical
theory is realized as a symmetry of the AdS5 metric

ds2 = r2dx23+1 +
dr2

r2
. (1)

We can think of the space as a box with r corresponding to energy scale. At
any fixed r, we see a 3 + 1d theory living in the x3+1 directions — large r is
the UV of the theory, whilst small r is the IR. The dilatation symmetries in
the classical gauge theory act on the space and the fields as x→ eαx,Aµ →
e−αAµ but are realized on the AdS space as x→ eαx, r → e−αr.
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Fields in the AdS space represent gauge invariant operators and sources
in the gauge theory such as the quark condensate 〈q̄q〉 or mass m. A scalar
field, φ, in the AdS space dual to such an operator/source has an action

S =

∫
d4x dr

√
−g
[
(∂µφ)2 −M2φ2

]
(2)

which leads to solutions φ ∼ a
r∆

+ b
r(4−∆) , ∆(∆− 4) = M2. The integration

constants, a, b, have the correct dimensions to play the roles of the source and
its associated operator. The relation between the dimension of an operator
and the mass of the dual scalar is key to much of our discussion to come.

It is worth stressing that although this discussion appears rigorous, we
made a big leap of faith to write down a weakly coupled theory of the AdS
space. The only justification for this is that there is strong evidence that
this is correct for the strongly coupled N = 4 super-Yang–Mills. We can
hope the ideas will apply to a wider set of strongly coupled gauge theories.
Traditional AdS/QCD: The first simple phenomenological model of QCD
using holography assumed the space is AdS5 with a hard cut off at some r0 to
represent the mass gap scale [2]. The large r UV description of QCD remains
an AdS dual inspite of the fact that QCD becomes a weakly coupled theory
of quarks and gluons — the AdS dual should be strongly coupled. One gets
away with ignoring this because the AdS description comes from N = 4
SYM which is conformal (like QCD’s UV) and preserves the perturbative
dimension of the operators we will include.

We include a mass squared −3 Nf × Nf scalar field, X, that describes
the quark mass and condensate (here the integration constants equivalent to
a, b above are input and fitted to QCD) — X’s phase is the pion; a vector
gauge field to describe the operator q̄γµq (and hence the ρ mesons); an axial
gauge field to describe the operator q̄γ5γµq (the a mesons). The action is

S =

∞∫
r0

d4x dr
√
−g Tr

[
|DX|2 + 3|X|2 − 1

2g25

(
F 2
V + F 2

A

)]
. (3)

For example, we can find the ρ meson mass by solving the vector equation of
motion assuming a solution of the form V ∼ V (r)e−iq.x, q2 = −M2

ρ . The UV
boundary condition which corresponds to the operator is the normalizable
solution V ∼ 1/r2. We can then numerically shoot into the IR boundary
at r0. In this simple model, one must pick a boundary condition at the
wall, e.g. Neumann. Only for particular choices of M2

ρ will this boundary
condition be achieved, which picks out the meson spectrum. Substituting
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the r dependent wave functions back into the action and integrating over r
generates a four dimensional action with predictions for the couplings of the
theory.

The model has four parameters — the hard wall r0, the quark mass,
the quark condensate and g5 (this latter was fixed in the original paper by
matching to the two point function of an external vector field). An example
of the fit from [2] to a simple set of parameters is shown in following table.

Value [MeV] Fit [MeV] Value [MeV] Fit [MeV]

mπ 139.6 ± 0.0004 141 fπ 92.4 ± 0.35 84.0
mρ 775.8 ± 0.5 832 Fρ 345 ± 8 353
ma 1230 ± 40 1220 Fa 433 ± 13 440

The fit is surprisingly good. One would like to make a real effective
field theory with the ability to estimate the errors due to missed terms. We
would need to include all operators important in the vacuum and match the
running of all operators’ dimensions to the perturbative QCD results in the
UV. However, the number of operators and couplings in the AdS Lagrangian
grows very fast and it rapidly becomes un-predictive. AdS/QCD is therefore
a model but the goodness of fit suggests that it can be a useful model in cases
where the lattice is incapable of computing. The method is likely to be most
effective in near conformal strongly coupled theories. The Nf dependence of
QCD is then an interesting problem — the lattice has only just begun to
study the problem and for some Nf there is believed to be an IR conformal
regime.

2. SU(Nc) gauge theory with varying Nf

The two loop running of the gauge coupling in QCD (with general Nc

and Nf) is given by

µ
dα

dµ
= −bα2 − cα3 , (4)

b =
1

6π
(11Nc − 2NF ) , c =

1

24π2

(
34N2

c − 10NcNf − 3
N2

c − 1

Nc
NF

)
.

(5)
The one loop result for the anomalous dimension of the quark mass is

γ =
3(N2

c − 1)

4Ncπ
α . (6)

Asymptotic freedom is present provided Nf > 11Nc/2. There is naively
an IR fixed point with value α∗ = −b/c. The fixed point begins at per-
turbative values of the coupling for Nf ' 11Nc/2 then rises to infinity at
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Nf ∼ 2.6Nc. At some critical value of Nf , the behaviour presumably changes
to QCD-like dynamics with a break from IR conformal to chiral symmetry
breaking behaviour [4]. For theories lying just below the critical value of
Nf , γ is expected to run (at a scale Λrunning) to an IR fixed point which
in the deep IR is just sufficient to trigger chiral symmetry breaking (at a
scale ΛIR). The IR condensate will have dimension 3 − γ. The conden-
sate measured in the UV is dimension 3 and will therefore take the form
〈q̄q〉UV ' Λ3−γ

IR Λγrunning. Theories with this enhancement of the UV conden-
sate are called walking gauge theories [5]. These are the behaviours with Nf

we would like to study using holography. To do so, we need a holographic
model that dynamically predicts chiral symmetry breaking.

3. Dynamic AdS/QCD

Dynamic AdS/QCD was introduced in detail in [3] based on top-down
models of chiral symmtry breaking that lie close in theory space to N = 4
SYM [6]. The model maps onto the action of a probe D7 brane in an
AdS geometry expanded to quadratic order. The gauge theory dynamics
is included through the running of the anomalous dimension of the quark
mass which is encoded through an AdS scalar’s mass term that depends on
the radial AdS coordinate ρ. The five dimensional action of our effective
holographic theory is

S =

∫
d4x dρTr ρ3

[
1

ρ2 + |X|2
|DX|2 +

∆m2

ρ2
|X|2 +

1

2g25

(
F 2
V + F 2

A

)]
. (7)

X, FV and FA play the same roles as the equivalent fields in the simplest
AdS/QCD model.

The five dimensional metric used to contract indices is

ds2 =
dρ2

(ρ2 + |X|2)
+
(
ρ2 + |X|2

)
dx2. (8)

|X| enters into the effective radial coordinate in the space, i.e. there is an
effective r2 = ρ2 + |X|2.

The key features of the model beyond the simple AdS/QCD model are:

• X is now a dynamical field whose profile is determined by its equa-
tions of motion. The quark mass is chosen in the UV and we impose
X ′(0) = 0 — the condensate is then a prediction of the dynamics.

• The v.e.v. of X enters into the AdS metric and the presence of a mass
or condensate generates an IR wall in r automatically.
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• The specific gauge theory dynamics is introduced through ∆m2(r)
using the relation ∆(∆ − 4) = M2 and ∆ = 3 − γ(r) for the quark
condensate.

We input the dynamics through our assumed form for γ(r). We will use the
one loop result in (6) with the two loop running of α in (4) (we set µ = r).
It is important to stress that these perturbative results are not expected to
be applicable in the non-perturbative regime but they are a decent guess as
to the dynamics involved. To demonstrate the strength of the model I will
now report on some of its predictions and successes.
γ = 1 criticality condition: A key question is for what value of Nf does
chiral symmetry breaking set in for massless quarks. When does the field X
experience an unstable potential and obtain a v.e.v.? In AdS instability for a
scalar field occurs when M2 = −4 (the Breitenlohner–Freedman bound [8]).
Given ∆(∆ − 4) = M2 this corresponds to ∆ = 2 or γ = 1. This seems
a robust prediction of the AdS description. It also matches the condition
obtained from solving gap equations [7]. Using our perturbative ansatz for
the running of γ, a fixed point value of 1 occurs for Nf ' 4Nc.
Hyperscaling relations in the conformal window: In the region 4Nc ≤
Nf ≤ 11Nc/2, the massless theory has an IR conformal fixed point. To
extract predictions it is then useful to put in a quark mass as a scale and
look at the dependence of quantities on the mass. If in the conformal regime
we consider the case with fixed but non-zero γ < 1, then the solution of the
equation of motion for X is

|X| = m

ργ
+

q̄q

ρ2−γ
. (9)

If we impose the on mass shell boundary condition X ′(ρ = X) = 0, then we
find

q̄q ∼ m
3−γ
1+γ . (10)

The power is that expected from dimensional analysis and the model cor-
rectly reproduces the expected hyperscaling relations.
Walking dynamics: For Nf just below 4Nc, we expect walking behaviour.
It is straightforward to compute the UV quark condensate and compare it
to an IR quantity such as f3π . In Fig. 1 (left) we plot this ratio against Nf

(which we treat as a continuous variable) for SU(3) gauge theory. We see
that this ratio indeed diverges and the model reproduces walking behaviour.
Since, at the phase transition, 〈q̄q〉UV grows but the height of the effective
potential between the true minimum and 〈q̄q〉UV = 0 is determined by the
IR scale, we expect the effective potential to be very flat and the σ mode in



480 N. Evans

the model to be light relative to the rest of the spectrum. In Fig. 1 (right) we
observe this phenomena in our model also. Further analysis of the spectrum
can be found in [3].
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Fig. 1. Plot of (left) 〈q̄q〉/f3π and (right) the vector and axial meson masses over
the σ mass against Nf for SU(3) gauge theory.

Dynamic AdS/QCD is therefore an easy to compute toy description of
the NF dependence of gauge theory. We hope that it will be a useful guide
for lattice practitioners studying this problem and for Beyond the Stan-
dard Model physics. An alternative holographic model of this dynamics is
explored in [9].
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