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SUPERSYMMETRIC YANG–MILLS PLASMA∗
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The N = 4 super Yang–Mills plasma is studied in the regime of weak
coupling. Collective excitations and collisional processes are discussed and
compared to those of QCD plasma. The two systems are concluded to be
very similar to each other with the differences mostly reflecting different
numbers of degrees of freedom.

DOI:10.5506/APhysPolBSupp.7.499
PACS numbers: 52.27.Ny, 11.30.Pb, 03.70.+k

1. Introduction

A great interest in the N = 4 super Yang–Mills theory was stimulated
by a discovery of the AdS/CFT duality of the five-dimensional gravity in
the anti-de Sitter geometry and the conformal field theories [1]. The duality
offered a unique tool to study strongly coupled field theories. Since the
gravitational constant and the coupling constant of dual conformal field
theory are inversely proportional to each other, some problems of strongly
coupled field theories can be solved via weakly coupled gravity. In this way,
some intriguing features of strongly coupled systems driven by the N = 4
super Yang–Mills dynamics were revealed, see the reviews [2, 3]. However,
one asks how properties of the N = 4 super Yang–Mills plasma (SYMP) are
related to those of quark–gluon plasma (QGP) studied experimentally in
relativistic heavy-ion collisions. Some properties of strongly coupled SYMP
have been confronted with those of QGP, see e.g. [4], but, in general, such a
comparison is a difficult problem. Instead, some comparative analyses have
been done in the domain of weak coupling where perturbative methods are
applicable [5–10].
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We undertook a task of systematic comparison of supersymmetric pertur-
bative plasmas to their non-supersymmetric counterparts. We started with
the N = 1 SUSY QED, analyzing first collective excitations of ultrarela-
tivistic plasma which, in general, is out of equilibrium [11] and then, in the
subsequent paper [12] we discussed collisional characteristics. Our findings
show that the SUSY QED and QED plasmas are surprisingly similar to each
other. Further, we have studied the N = 4 super Yang–Mills plasma, ana-
lyzing again collective excitations and collisional characteristics [13]. Here,
we summarize the study.

In the N = 4 Super Yang–Mills theory under consideration the gauge
group is SU(Nc) and every field belongs to its adjoint representation. There
are gauge bosons (gluons) described by the vector field Aaµ with a, b, c, · · · =
1, 2, . . . N2

c − 1. There are four Majorana fermions represented by the Weyl
spinors combined in the Dirac bispinors Ψi with i = 1, 2, 3, 4. Finally,
there are six real scalar fields which are assembled in the multiplet Φ =
(X1, Y1, X2, Y2, X3, Y3), where Xp and Yp are scalars and pseudoscalars. The
Lagrangian can be written as [14]
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where Fµνa = ∂µAνa−∂νA
µ
a + gfabcAµbA

ν
c and the covariant derivatives equal

(D/Ψi)
a = (∂/ δab + gfabcAc/ )Ψ bi and (DµΦ)a = Dµ

abΦb = (∂µδab + gfabcAµc )Φb;
g is the coupling constant; fabc are the structure constants of SU(Nc) group;
the 4×4 matrices αp, βp satisfy the commutation relations {αp, αq} = −2δpq,
{βp, βq} = −2δpq, [αp, βq] = 0. We use the natural system of units with
c = ~ = kB = 1; our choice of the metric tensor is (+ − −−).

2. Collective modes

Knowing the field equations of motion, one writes down the gluon, fermion
and scalar dispersion equations as

det
[
k2gµν − kµkν −Πµν(k)

]
= 0 , (2)

det [k/ −Σ(k)] = 0 , k2 + P (k) = 0 , (3)

where color and other indices are dropped, Πµν(k), Σ(k) and P (k) are the
retarded self energies and k ≡ (ω,k) is the four-momentum. As seen, the
whole dynamical information is contained in the self-energies.
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To compute the self-energies, which enter the dispersion equations, the
plasma is assumed to be homogeneous, locally colorless but the momentum
distribution is, in general, different from equilibrium one. Therefore, the
Keldysh–Schwinger formalism, which allows one to describe both equilibrium
and non-equilibrium many-body systems, is adopted. We also apply the hard
loop approach, see the review [15], which was generalized to anisotropic
systems in [16].

Computing the one-loop contributions and performing the hard loop
approximation, one finds the retarded gluon polarization tensor as

Πµν
ab (k) = g2Ncδab

∫
d3p

(2π)3

f(p)

Ep

k2pµpν − (kµpν + pµkν − gµν(k · p)) (k · p)
(k · p+ i0+)2

,

(4)
where f(p) ≡ 2ng(p) + 8nf (p) + 6ns(p) is the effective distribution function
of plasma constituents. The coefficients in front of the distributions functions
ng(p), nf (p), ns(p) equal the numbers of degrees of freedom (except colors)
of, respectively, gauge bosons, fermions and scalars. This is a manifestation
of supersymmetry. Another effect of the supersymmetry is vanishing of the
tensor (4) in the vacuum limit when f(p) = 0. The polarization tensor (4)
is symmetric (Πµν(k) = Πνµ(k)) and transverse (kµΠ

µν(k) = 0) and thus
it is gauge independent. The fermion and scalar self-energies computed at
the one-loop level in the hard loop approximation are

Σij
ab(k) =

g2

2
Ncδabδ

ij

∫
d3p

(2π)3

f(p)

Ep

p/

k · p+ i0+
, (5)

PABab (k) = −2g2Ncδabδ
AB

∫
d3p

(2π)3

f(p)

Ep
. (6)

The hard loop approach can be formulated in an elegant and compact
way by introducing the effective action which was first derived for equi-
librium plasmas in [17–19] and later on generalized to anisotropic systems
in [20]. Since the self-energy of a given field is the second functional deriva-
tive of the action with respect to the field, one writes

L(A)
2 (x) =

1

2

∫
d4y Aaµ(x)Πµν

ab (x− y)Abν(y) , (7)

where Πµν
ab is given by the formula (4). The subscript ‘2’ indicates that

the action generates only two-point functions. To get n-point functions
the action needs to be modified to a gauge invariant form: the ordinary
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derivative should be replaced by the covariant one. Repeating the calcula-
tions described in [20], one finds the hard loop effective actions as

LAHL = g2Nc

∫
d3p

(2π)3

f(p)

Ep
F aµν(x)

(
pνpρ

(p ·D)2

)
ab

F b µρ (x) , (8)

LΨHL = g2Nc

∫
d3p

(2π)3

f(p)

Ep
Ψ̄ai (x)

(
p · γ
p ·D

)
ab

Ψ bi (x) , (9)

LΦHL = −2g2Nc

∫
d3p

(2π)3

f(p)

Ep
ΦaA(x)ΦaA(x) . (10)

The actions (8), (9), (10) are obtained from the self-energies but the
reasoning can be turned around. As argued in [18, 19], the actions of gauge
bosons (8), fermions (9), and scalars (10) are of unique gauge invariant form.
Therefore, the structures of hard loop self-energies are unique. Consequently,
the self-energies can be inferred from the known QED and QCD results with
some help of supersymmetry arguments.

When the self-energies are substituted into the dispersion equations, col-
lective modes are found as solutions of the equations. The structure of polar-
ization tensor (4) is such as of gluon polarization tensor in QCD plasma. It
also has analogical form as in both usual and supersymmetric QED plasma.
Therefore, the spectrum of collective excitations of gauge bosons is in all
cases the same. The form of Majorana fermion self-energy (5) happens to be
the same as the quark self-energy in QCD plasma. It also coincides with the
electron self-energy in both non-supersymmetric and supersymmetric QED
plasma. Therefore, we have identical spectrum of excitations of fermions in
all these systems. The scalar self-energy (6) is independent of momentum, it
is negative and real. Therefore, one writes P (k) = −m2

eff , where meff is the
effective mass, and the dispersion relation is as that of relativistic massive
free particle.

3. Collisional characteristics

Transport coefficients of weakly coupled SYMP are expected to be qual-
itatively similar to those of QGP. Let us consider, for example, the shear
viscosity η, which has been computed for SYMP in [6]. Since the tempera-
ture is the only dimensional parameter which characterizes the equilibrium
plasma of massless constituents, η must be proportional to T 3. The domi-
nant contributions to η come from the binary collisions driven by a one-gluon
exchange and η ∼ T 3/g4 ln g−1 at the leading order. The factor 1/ ln g−1

appears due to the infrared singularity of the Coulomb-like interaction. The
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shear viscosity coefficients of QGP and SYMP differ only by numerical fac-
tors which mostly reflect different numbers of degrees of freedom in the two
plasmas.

We considered [12] two transport characteristics of the N = 1 QED
plasma which are not so constrained by dimensional arguments and seemed
to strongly depend on elementary process under consideration. Specifically,
we computed the collisional energy loss and momentum broadening of a par-
ticle traversing the equilibrium plasma. The dimensional argument does not
work here because the two quantities depend not only on the plasma tem-
perature but on the energy of test particle as well. We computed the energy
loss and momentum broadening due to the processes which, like the Comp-
ton scattering on selectrons, are independent of momentum transfer. Such
processes are qualitatively different from the Coulomb-like interactions dom-
inated by small momentum transfers. We obtained the exact formulas of the
energy loss and momentum broadening due to the momentum-independent
scattering. In the limit of high energy of test particle which is important in
the context of jet suppression phenomenology, the energy loss and momen-
tum broadening appeared to be very similar (at the leading order) to those
driven by the Coulomb-like interactions.

The result can be understood as follows. One estimates the energy loss
dE
dx as 〈∆E〉/λ, where 〈∆E〉 is the typical change of particle’s energy in
a single collision and λ is the particle’s mean free path given as λ−1 = ρ σ
with ρ ∼ T 3 being the density of scatterers and σ denoting the cross section.
For the differential cross section which is independent of momentum trans-
fer, the total cross section is σ ∼ e4/s. When a highly energetic particle
with energy E scatters on massless plasma particle, s ∼ ET and conse-
quently σ ∼ e4/(ET ). The inverse mean free path is thus estimated as
λ−1 ∼ e4T 2/E. When the scattering process is independent of momen-
tum transfer, 〈∆E〉 is of the order of E and we finally find −dE

dx ∼ e4T 2.
In the case of Coulomb interaction, we have 〈∆E〉 ∼ −e2T , λ−1 = e2T
which provide the same estimate of the energy loss. The energy transfer in
a single collision is thus much smaller in the Coulomb interaction than in
the momentum independent scattering but the cross section is bigger in the
same proportion. Consequently, the two interactions corresponding to very
different differential cross sections lead to very similar energy losses.

We expect an analogous situation in SYMP. There are various elementary
processes but the energy loss and momentum broadening of highly energetic
particles do not much differ from those in QGP. Therefore, not only transport
coefficients like shear viscosity but other collisional characteristics of SYMP
appear to be qualitatively similar to those of QGP.
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4. Conclusions

Although QCD is rather different than N = 4 super Yang–Mills the-
ory, QGP and SYMP are surprisingly similar in the weak coupling regime.
The form of gluon collective excitations is identical and the same is true
for the fermion (quark) modes. The scalar modes in SYMP are as of mas-
sive relativistic particle. The sets of elementary processes are different in
QGP and SYMP but the transport coefficients, which are dominated by the
Coulomb-like interactions, are quite similar. The energy loss and momentum
broadening of a highly energetic test particle are also rather similar in the
two plasma systems. The differences mostly come from different numbers of
degrees of freedom in both plasmas.

This work was partially supported by the Polish National Science Centre
under Grant No. 2011/03/B/ST2/00110.
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